The Inverse and Implicit Function Theorems.

Proposition. Suppose X and Y are normed vector spaces and L is a linear isomorphism from X onto Y. Then

$$
\frac{1}{\left\|L^{-1}\right\|}=\inf \{|L(x)|: x \in X \text { and }|x|=1\}
$$

Remark. In what follows $1 / \infty=0$ and $1 / \infty=0$.
Proof. Set $\beta=\inf \{|L(x)|: x \in X$ and $|x|=1\}$.
For any $x \in X$ such that $|x|=1$ we have

$$
1=\left|L^{-1}(L(x))\right| \leq\|L\|^{-1}| ||L(x)|
$$

which implies that $1 /\left\|L^{-1}\right\| \leq \beta$.
For any $y \in Y$ we have that

$$
|y|=\left|L\left(L^{-1}(y)\right)\right| \geq \beta| | L^{-1}(y) \mid
$$

which implies that $\left\|L^{-1}\right\| \leq 1 / \beta$.
The Inverse Function Theorem. Suppose
(1) X and Y are Banach spaces, $a \in X, 0<R<\infty, B=\{x \in X:|x-a| \leq R\}$ and

$$
f: B \rightarrow Y
$$

(2) L is a linear isomorphism from X onto $Y,\|L\|<\infty$ and

$$
\begin{gathered}
p(x)=f(x)-[f(a)+L(x-a)] \text { for } x \in B \\
\alpha<\beta
\end{gathered}
$$

where

$$
\alpha=\operatorname{Lip}(p) \quad \text { and } \quad \beta=\inf \{|L(x)|: x \in X \text { and }|x|=1\}
$$

Then
(4) f^{-1} is a function and $\operatorname{Lip}\left(f^{-1}\right) \leq(\beta-\alpha)^{-1}$;

$$
\begin{equation*}
\{f(a)+L(h):|h| \leq(1-\alpha / \beta) R\} \subset \mathbf{r n g}(f) \subset\{f(a)+L(h):|h| \leq(1+\alpha / \beta) R\} \tag{5}
\end{equation*}
$$

(6) if f is differentiable at a with differential L then f^{-1} is differentiable at $f(a)$ with differential L^{-1}.

Remark. It is true and nontrivial that, if L is a linear isomorphism from the Banach space X onto the Banach space Y, the boundedness of L is equivalent to the boundedness of L^{-1}. Thus there is some redundancy in our hypotheses.

Proof. By virtue of the previous Proposition we have that $\left\|L^{-1}\right\|=1 / \beta$. Note also that $p(a)=0$.
Suppose x_{1} and x_{2} are points of B. We have

$$
L\left(x_{2}-x_{1}\right)=L\left(x_{2}-a\right)-L\left(x_{1}-a\right)=f\left(x_{2}\right)-f\left(x_{1}\right)-\left(p\left(x_{2}\right)-p\left(x_{2}\right)\right)
$$

So

$$
\begin{aligned}
\left|x_{1}-x_{2}\right| & =\left|L^{-1}\left(L\left(x_{2}-x_{1}\right)\right)\right| \\
& \leq \beta^{-1}\left(\left|p\left(x_{2}\right)-p\left(x_{1}\right)\right|+\left|f\left(x_{1}\right)-f\left(x_{1}\right)\right|\right) \\
& \leq \beta^{-1}\left(\alpha\left|x_{2}-x_{1}\right|+\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|\right)
\end{aligned}
$$

which proves (4).
Next we suppose $y \in\{f(a)+L(h):|h| \leq(1-\alpha / \beta) R\}$ and let $C: B \rightarrow Y$ be such that

$$
C(x)=a+L^{-1}(y-f(a)-p(x)) \quad \text { whenever } x \in B .
$$

For any $x \in B$ we have

$$
\begin{aligned}
|C(x)-a| & =\left|L^{-1}(y-f(a))+L^{-1}(p(a)-p(x))\right| \\
& \leq\left|L^{-1}(y-f(a))\right|+\left|L^{-1}(p(a)-p(x))\right| \\
& \leq(1-\alpha / \beta) R+\alpha / \beta|x-a| \\
& \leq R
\end{aligned}
$$

SO

$$
C[B] \subset B
$$

Furthermore, for any x_{1} and x_{2} in B we have

$$
\left|C\left(x_{1}\right)-C\left(x_{2}\right)\right|=\left|L^{-1}\left(p\left(x_{1}\right)-p\left(x_{2}\right)\right)\right| \leq \frac{\alpha}{\beta}\left|x_{1}-x_{2}\right|
$$

Thus, by the Contraction Mapping Principle, C has a unique fixed point x in B. Now

$$
C(x)=x \Rightarrow x=a+L^{-1}(y-f(a)-p(x)) \Rightarrow L(x-a)=y-f(a)-p(x) \Rightarrow f(x)=y
$$

thus the first inclusion in (5) is proved.
To prove the second inclusion in (5), we suppose $x \in B$, set $h=L^{-1}(f(x)-f(a))$ and note that $h=(x-a)+L^{-1}(p(x)-p(a))$. Thus

$$
|h|=\left|(x-a)+L^{-1}(p(x)-p(a))\right| \leq|x-a|+\frac{\alpha}{\beta}|x-a|=\left(1+\frac{\alpha}{\beta}\right)|x-a| .
$$

Finally, suppose f is differentiable at a with differential L and let $\epsilon>0$. Let $\epsilon_{f}=\beta \epsilon /(\beta-\alpha)$. Choose δ_{f} such that

$$
x \in B \text { and }|x-a| \leq \delta_{f} \Rightarrow|f(x)-f(a)-L(x-a)| \leq \epsilon_{f}|x-a|
$$

Let $\delta=\delta_{f} /(\beta-\alpha)$ and suppose $y \in \operatorname{rng} f$ and $|y-f(a)| \leq \delta$. Set $x=f^{-1}(y)$. Then

$$
|x-a| \leq \operatorname{Lip}\left(f^{-1}\right)|y-f(a)| \leq \frac{1}{\beta-\alpha}|y-f(a)| \leq \delta_{f}
$$

so

$$
\begin{aligned}
\mid f^{-1}(y)-a- & L^{-1}(y-f(a) \mid \\
& =\left|L^{-1}(L(x-a)-f(x)-f(a))\right| \\
& \leq \beta \epsilon_{f}|x-a| \\
& \leq \beta \epsilon_{f} \frac{1}{\beta-\alpha}|y-f(a)| \\
& =\epsilon|y-f(a)|
\end{aligned}
$$

since we know from (5) that $f(a)$ is an interior point of $\mathbf{r n g}(f)$ we conclude that f^{-1} is differentiable at $f(a)$ with differential L^{-1}.

Corollary. Suppose

(1) X and Y are Banach spaces;
(2) $A \subset X$ and $f: A \rightarrow Y$;
(3) $a \in A, f$ is continuously differentiable at a and $\partial f(a)$ is a Banach space isomorphism from X onto Y.

Then there is $\delta>0$ such that

$$
(f \mid\{x \in X:|x-a|<\delta\})^{-1}
$$

is a function which is differentiable at $f(a)$.
Proof. Let $L=\partial f(a)$ and let $p(x)=f(x)-[f(a)-L(x-a)]$ for x in the domain of f. Then $\partial p(x)=$ $\partial f(x)-\partial f(a)$ for x near a so $\lim _{x \rightarrow a}\|\partial p(x)\|=0$. The assertion to be proved now follows from the preceding Theorem.

