
The Inverse and Implicit Function Theorems.

Proposition. Suppose X and Y are normed vector spaces and L is a linear isomorphism from X onto Y .
Then

1
||L−1|| = inf{|L(x)| : x ∈ X and |x| = 1}.

Remark. In what follows 1/∞ = 0 and 1/∞ = 0.
Proof. Set β = inf{|L(x)| : x ∈ X and |x| = 1}.

For any x ∈ X such that |x| = 1 we have

1 = |L−1(L(x))| ≤ ||L||−1|| |L(x)|

which implies that 1/||L−1|| ≤ β.
For any y ∈ Y we have that

|y| = |L(L−1(y))| ≥ β||L−1(y)|
which implies that ||L−1|| ≤ 1/β.

The Inverse Function Theorem. Suppose
(1) X and Y are Banach spaces, a ∈ X, 0 < R < ∞, B = {x ∈ X : |x− a| ≤ R} and

f : B → Y.

(2) L is a linear isomorphism from X onto Y , ||L|| < ∞ and

p(x) = f(x)− [f(a) + L(x− a)] for x ∈ B.

(3) α < β

where
α = Lip(p) and β = inf{|L(x)| : x ∈ X and |x| = 1}.

Then

(4) f−1 is a function and Lip(f−1) ≤ (β − α)−1;

(5) {f(a) + L(h) : |h| ≤ (1− α/β)R} ⊂ rng(f) ⊂ {f(a) + L(h) : |h| ≤ (1 + α/β)R};

(6) if f is differentiable at a with differential L then f−1 is differentiable at f(a) with differential L−1.

Remark. It is true and nontrivial that, if L is a linear isomorphism from the Banach space X onto
the Banach space Y , the boundedness of L is equivalent to the boundedness of L−1. Thus there is some
redundancy in our hypotheses.

Proof. By virtue of the previous Proposition we have that ||L−1|| = 1/β. Note also that p(a) = 0.
Suppose x1 and x2 are points of B. We have

L(x2 − x1) = L(x2 − a)− L(x1 − a) = f(x2)− f(x1)−
(
p(x2)− p(x2)

)

so
|x1 − x2| = |L−1(L(x2 − x1))|

≤ β−1
(|p(x2)− p(x1)|+ |f(x1)− f(x1)|

)

≤ β−1
(
α|x2 − x1|+ |f(x2)− f(x1)|

)
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which proves (4).
Next we suppose y ∈ {f(a) + L(h) : |h| ≤ (1− α/β)R} and let C : B → Y be such that

C(x) = a + L−1(y − f(a)− p(x)) whenever x ∈ B.

For any x ∈ B we have
|C(x)− a| = |L−1(y − f(a)) + L−1(p(a)− p(x))|

≤ |L−1(y − f(a))|+ |L−1(p(a)− p(x))|
≤ (1− α/β)R + α/β|x− a|
≤ R

so
C[B] ⊂ B.

Furthermore, for any x1 and x2 in B we have

|C(x1)− C(x2)| = |L−1(p(x1)− p(x2))| ≤ α

β
|x1 − x2|.

Thus, by the Contraction Mapping Principle, C has a unique fixed point x in B. Now

C(x) = x ⇒ x = a + L−1(y − f(a)− p(x)) ⇒ L(x− a) = y − f(a)− p(x) ⇒ f(x) = y;

thus the first inclusion in (5) is proved.
To prove the second inclusion in (5), we suppose x ∈ B, set h = L−1(f(x) − f(a)) and note that

h = (x− a) + L−1(p(x)− p(a)). Thus

|h| = |(x− a) + L−1(p(x)− p(a))| ≤ |x− a|+ α

β
|x− a| = (1 +

α

β
)|x− a|.

Finally, suppose f is differentiable at a with differential L and let ε > 0. Let εf = βε/(β − α). Choose
δf such that

x ∈ B and |x− a| ≤ δf ⇒ |f(x)− f(a)− L(x− a)| ≤ εf |x− a|.
Let δ = δf/(β − α) and suppose y ∈ rng f and |y − f(a)| ≤ δ. Set x = f−1(y). Then

|x− a| ≤ Lip (f−1)|y − f(a)| ≤ 1
β − α

|y − f(a)| ≤ δf

so
|f−1(y)−a− L−1(y − f(a)|

= |L−1
(
L(x− a)− f(x)− f(a)

)|
≤ βεf |x− a|
≤ βεf

1
β − α

|y − f(a)|

= ε|y − f(a)|;
since we know from (5) that f(a) is an interior point of rng(f) we conclude that f−1 is differentiable at f(a)
with differential L−1.

Corollary. Suppose
(1) X and Y are Banach spaces;
(2) A ⊂ X and f : A → Y ;
(3) a ∈ A, f is continuously differentiable at a and ∂f(a) is a Banach space isomorphism from X onto Y .
Then there is δ > 0 such that (

f |{x ∈ X : |x− a| < δ})−1

is a function which is differentiable at f(a).
Proof. Let L = ∂f(a) and let p(x) = f(x) − [f(a) − L(x − a)] for x in the domain of f . Then ∂p(x) =
∂f(x)−∂f(a) for x near a so limx→a ||∂p(x)|| = 0. The assertion to be proved now follows from the preceding
Theorem.
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