The Inverse and Implicit Function Theorems.

Proposition. Suppose X and Y are normed vector spaces and L is a linear isomorphism from X onto Y. Then 1

$$\frac{1}{||L^{-1}||} = \inf\{|L(x)| : x \in X \text{ and } |x| = 1\}$$

Remark. In what follows $1/\infty = 0$ and $1/\infty = 0$. **Proof.** Set $\beta = \inf\{|L(x)| : x \in X \text{ and } |x| = 1\}.$

For any $x \in X$ such that |x| = 1 we have

$$1 = |L^{-1}(L(x))| \le ||L||^{-1}|||L(x)|$$

which implies that $1/||L^{-1}|| \leq \beta$.

For any $y \in Y$ we have that

$$|y| = |L(L^{-1}(y))| \ge \beta ||L^{-1}(y)|$$

which implies that $||L^{-1}|| \leq 1/\beta$. \Box

The Inverse Function Theorem. Suppose

(1) X and Y are Banach spaces, $a \in X$, $0 < R < \infty$, $B = \{x \in X : |x - a| \le R\}$ and

 $f: B \to Y.$

(2) L is a linear isomorphism from X onto Y, $||L|| < \infty$ and

$$p(x) = f(x) - [f(a) + L(x - a)]$$
 for $x \in B$.

(3)

$$\alpha < \beta$$

where

$$\alpha = \operatorname{Lip}(p)$$
 and $\beta = \inf\{|L(x)| : x \in X \text{ and } |x| = 1\}$

Then

(4) f^{-1} is a function and $Lip(f^{-1}) \le (\beta - \alpha)^{-1};$

(5)
$$\{f(a) + L(h) : |h| \le (1 - \alpha/\beta)R\} \subset \mathbf{rng}(f) \subset \{f(a) + L(h) : |h| \le (1 + \alpha/\beta)R\}$$

(6) if f is differentiable at a with differential L then f^{-1} is differentiable at f(a) with differential L^{-1} .

Remark. It is true and nontrivial that, if L is a linear isomorphism from the Banach space X onto the Banach space Y, the boundedness of L is equivalent to the boundedness of L^{-1} . Thus there is some redundancy in our hypotheses.

Proof. By virtue of the previous Proposition we have that $||L^{-1}|| = 1/\beta$. Note also that p(a) = 0. Suppose x_1 and x_2 are points of B. We have

$$L(x_2 - x_1) = L(x_2 - a) - L(x_1 - a) = f(x_2) - f(x_1) - (p(x_2) - p(x_2))$$

 \mathbf{SO}

$$\begin{aligned} |x_1 - x_2| &= |L^{-1}(L(x_2 - x_1))| \\ &\leq \beta^{-1} (|p(x_2) - p(x_1)| + |f(x_1) - f(x_1)|) \\ &\leq \beta^{-1} (\alpha |x_2 - x_1| + |f(x_2) - f(x_1)|) \end{aligned}$$

which proves (4).

Next we suppose $y \in \{f(a) + L(h) : |h| \le (1 - \alpha/\beta)R\}$ and let $C : B \to Y$ be such that

$$C(x) = a + L^{-1}(y - f(a) - p(x)) \quad \text{whenever } x \in B.$$

For any $x \in B$ we have

$$\begin{aligned} |C(x) - a| &= |L^{-1}(y - f(a)) + L^{-1}(p(a) - p(x))| \\ &\leq |L^{-1}(y - f(a))| + |L^{-1}(p(a) - p(x))| \\ &\leq (1 - \alpha/\beta)R + \alpha/\beta|x - a| \\ &\leq R \end{aligned}$$

 \mathbf{SO}

$$C[B] \subset B.$$

Furthermore, for any x_1 and x_2 in B we have

$$|C(x_1) - C(x_2)| = |L^{-1}(p(x_1) - p(x_2))| \le \frac{\alpha}{\beta} |x_1 - x_2|$$

Thus, by the Contraction Mapping Principle, C has a unique fixed point x in B. Now

$$C(x) = x \Rightarrow x = a + L^{-1}(y - f(a) - p(x)) \Rightarrow L(x - a) = y - f(a) - p(x) \Rightarrow f(x) = y;$$

thus the first inclusion in (5) is proved.

To prove the second inclusion in (5), we suppose $x \in B$, set $h = L^{-1}(f(x) - f(a))$ and note that $h = (x - a) + L^{-1}(p(x) - p(a))$. Thus

$$|h| = |(x-a) + L^{-1}(p(x) - p(a))| \le |x-a| + \frac{\alpha}{\beta}|x-a| = (1 + \frac{\alpha}{\beta})|x-a|.$$

Finally, suppose f is differentiable at a with differential L and let $\epsilon > 0$. Let $\epsilon_f = \beta \epsilon / (\beta - \alpha)$. Choose δ_f such that

$$x \in B$$
 and $|x-a| \le \delta_f \Rightarrow |f(x) - f(a) - L(x-a)| \le \epsilon_f |x-a|.$

Let $\delta = \delta_f / (\beta - \alpha)$ and suppose $y \in \operatorname{rng} f$ and $|y - f(a)| \leq \delta$. Set $x = f^{-1}(y)$. Then

$$|x-a| \le \operatorname{Lip}(f^{-1})|y-f(a)| \le \frac{1}{\beta-\alpha}|y-f(a)| \le \delta_f$$

 \mathbf{SO}

$$|f^{-1}(y) - a - L^{-1}(y - f(a))|$$

$$= |L^{-1}(L(x - a) - f(x) - f(a))|$$

$$\leq \beta \epsilon_f |x - a|$$

$$\leq \beta \epsilon_f \frac{1}{\beta - \alpha} |y - f(a)|$$

$$= \epsilon |y - f(a)|;$$

since we know from (5) that f(a) is an interior point of $\mathbf{rng}(f)$ we conclude that f^{-1} is differentiable at f(a) with differential L^{-1} . \Box

Corollary. Suppose

(1) X and Y are Banach spaces;

(2) $A \subset X$ and $f : A \to Y$;

(3) $a \in A$, f is continuously differentiable at a and $\partial f(a)$ is a Banach space isomorphism from X onto Y. Then there is $\delta > 0$ such that

$$(f|\{x \in X : |x-a| < \delta\})^{-1}$$

is a function which is differentiable at f(a).

Proof. Let $L = \partial f(a)$ and let p(x) = f(x) - [f(a) - L(x - a)] for x in the domain of f. Then $\partial p(x) = \partial f(x) - \partial f(a)$ for x near a so $\lim_{x \to a} ||\partial p(x)|| = 0$. The assertion to be proved now follows from the preceding Theorem. \Box