The Inverse and Implicit Function Theorems.

Proposition. Suppose X and Y are normed vector spaces and L is a linear isomorphism from X onto Y.

Then
1

L=
Remark. In what follows 1/00 =0 and 1/0c0 = 0.
Proof. Set 8 =inf{|L(z)|: 2 € X and |z| =1}.
For any € X such that |z| = 1 we have

=inf{|L(z)| : z € X and |z| = 1}.

1= [L7(L(2)] < [ILI7H|L(=)]

which implies that 1/||L71|| < 8.
For any y € Y we have that
lyl = [L(L™(y))| = BILT ()]

which implies that ||[L7Y| < 1/8. O

The Inverse Function Theorem. Suppose
(1) X and Y are Banach spaces,a € X, 0 < R< 0o, B={zx € X : |z —a|] < R} and

f:B—-Y.
(2) L is a linear isomorphism from X onto Y, ||L|| < co and

p(z) = f(x) — [f(a) + L(z — a)] for z € B.

(3) a<f
where
a=Lip(p) and [ =inf{|L(z)|:z € X and |z|=1}.
Then
(4) f~1is a function and Lip(f~!) < (8 — a)71;
() {f(a) + L(h) : [n] < (1 —a/B)R} C rog(f) C {f(a) + L(h) : [n] < (1 + o/ B)R};
(6) if f is differentiable at a with differential L then f~! is differentiable at f(a) with differential L~!.

Remark. It is true and nontrivial that, if L is a linear isomorphism from the Banach space X onto
the Banach space Y, the boundedness of L is equivalent to the boundedness of L=!. Thus there is some
redundancy in our hypotheses.

Proof. By virtue of the previous Proposition we have that ||[L~!|| = 1/3. Note also that p(a) = 0.
Suppose z; and x5 are points of B. We have

L(zy — 1) = L(wy — a) — L(zy — a) = f(z2) — f(21) — (p(z2) — p(z2))

21— 2] = |L N (L2 — 1))
< B (Ip(z) — plar)| + 1 f (1) — f()])
< B Halzy — 21| 4 | f(22) — f(21)])
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which proves (4).
Next we suppose y € {f(a) + L(h) : |h| < (1 — a/B)R} and let C : B — Y be such that
C(z)=a+ L "(y— f(a) —p(z)) whenever z € B.
For any x € B we have
[C(a) —al = L7 (y — f(a)) + L™} (p(a) — p(2))|

<[L7Hy = f@)] + L7 (p(a) = p(2))]

< —-a/B)R+a/blz —al

<R
S0

C[B] C B.

Furthermore, for any x; and x5 in B we have

|C (1) — Clx2)| = |[L7(pla1) — plaa))] < %

Thus, by the Contraction Mapping Principle, C' has a unique fixed point « in B. Now
Clx)=rx=>2=a+L " (y— f(a) —px)) = Lz —a) =y — f(a) —p(z) = f(z) =y;

thus the first inclusion in (5) is proved.
To prove the second inclusion in (5), we suppose z € B, set h = L™!(f(z) — f(a)) and note that
h = (z —a) + L™ (p(x) — p(a)). Thus

|z — 22

I8 = |(x — a) + L} (p(x) — p(a))| < & —a] + %|xfa| = (1 +%

Finally, suppose f is differentiable at a with differential L and let € > 0. Let ¢y = fe/(8 — ). Choose
dr such that

)|z — al.

x€Band|r—a|l<d; = |f(z)— f(a) — L(z — a)| < eflz —al.
Let § = 6;/(8 — «) and suppose y € rng f and |y — f(a)| < J. Set z = f~*(y). Then

1
0 —«

|z —a| < Lip (f71)ly - f(a)| < ly — f(a)] < ¢

SO

|f y)—a— L (y — f(a)|
= L7 (L(z — a) — f(z) — f(a))]

Sﬂef\m—a\
<ﬂ€fﬁ ly — f(a)]
=ely — f(a)l;

since we know from (5) that f(a) is an interior point of rng(f) we conclude that f~! is differentiable at f(a)
with differential L=1. O

Corollary. Suppose
(1) X and Y are Banach spaces;
(2)ACcXand f: A—Y;
(3) a € A, f is continuously differentiable at a and df(a) is a Banach space isomorphism from X onto Y.
Then there is § > 0 such that
(f{z € X :|z—a| <6}) "
is a function which is differentiable at f(a).
Proof. Let L = 9f(a) and let p(z) = f(x) — [f(a) — L(x — a)] for = in the domain of f. Then Op(z) =
| =

Of () —0f(a) for x near a so lim,_,, ||0p(x) 0. The assertion to be proved now follows from the preceding
Theorem. O



