Integration of a scalar function over a submanifold.

Suppose n is a positive integer, V is an n-dimensional inner product space, $0 \leq m<n$ and $M \in \mathbf{M}_{m}(V)$.
Definition. We say (T, ϕ) is a smooth local parameter for M if
(1) T is an open subset of \mathbf{R}^{m};
(2) $\phi: T \rightarrow V$ is smooth;
(3) $\boldsymbol{\operatorname { r n g }} \phi \subset M$;
(4) ϕ is univalent;
(5) dimrng $\partial \phi(t)=m$ whenever $t \in T$.

If (T, ϕ) is a smooth local parameter for M we define the smooth function

$$
J_{m} \phi: T \rightarrow(0, \infty)
$$

the m-Jacobian of ϕ, by letting

$$
J_{m} \phi(t)=\sqrt{\operatorname{det} \partial \phi(t)^{*} \circ \partial \phi(t)} \quad \text { whenever } t \in T
$$

We say a function f on M with values in a topological space is Lebesgue measurable if $f \circ \phi$ is Lebesgue measurable whenever (T, ϕ) is a local coordinate for M.

We let

$$
\mathcal{L}_{M}^{+}
$$

be the family of Lebesgue measurable functions.
Remark. Suppose $a \in M$. Then there are an open subset U of V and $\left(U, \Phi, \mathbf{U}^{n}\right)$ such that $a \in U, \Phi(a)=0$ and $\Phi[M \cap U]=\mathbf{U}^{m, n}$. It follows that $\left(\mathbf{U}^{m, n}, \Phi^{-1} \circ i_{m, n}\right)$ is a local parameter for M whose range contains a.

We say (W, ψ) is a smooth local coordinate for M if
(1) W is a subset of M which is open relative to V;
(2) $\psi: W \rightarrow \mathbf{R}^{m}$;
(3) $\left(\psi[W], \psi^{-1}\right)$ is a smooth local parameter for M.

Theorem. Suppose
(1) (T, ϕ) is a smooth local parameter for M;
(2) U is an open subset of V and $\phi(t) \in U$;
(3) $\left(U, \Phi, \mathbf{U}^{n}\right) \in$ Diffeo $_{n}, \Phi(\phi(t))=0$ and $\Phi[M \cap U]=\mathbf{U}^{m, n}$.

Then

$$
\begin{equation*}
p_{m, n} \circ \Phi \circ \phi \in \mathbf{D i f f e o}_{m} \tag{4}
\end{equation*}
$$

Proof. Let $F=p_{m, n} \circ \Phi \circ \phi$. Then dmn $F=T \cap \phi^{-1}[U]$ which is an open subset of \mathbf{R}^{m}, F is smooth and F is univalent. Moreover, by the Chain Rule, we have that $\mathbf{r n g} \partial f(u)=\mathbf{R}^{m}$ whenever $u \in \mathbf{d m n} F$. The assertion to be proved now follows from a Corollary to the Inverse Function Theorem.

Corollary. Suppose (U, ψ) is a smooth local coordinate for M. then $\left(\psi[U], \psi^{-1}\right)$ is a smooth local parameter for M.
Proof. We have only to verify that $\psi[U]$ is open relative to M and this follows directly from the preceding Proposition.

Corollary. Suppose $\left(T_{i}, \phi_{i}\right), i=1,2$, are smooth local parameters for M

$$
\left(T_{1} \cap \phi_{1}^{-1} \circ \phi_{2}\left[T_{2}\right], \phi_{2}^{-1} \circ \phi_{1}, T_{2} \cap \phi_{2}^{-1} \circ \phi_{1}\left[T_{1}\right]\right) \in \text { Diffeo }_{m}
$$

Proof. It is evident that the $T_{1} \cap \phi_{1}^{-1}\left[T_{2}\right]$ and $T_{2} \cap \phi_{2}^{-1}\left[T_{2}\right]$ are open sets of \mathbf{R}^{m} which are the domain and range of $\phi_{2}^{-1} \circ \phi_{1}$. It is evident that $\phi_{2}^{-1} \circ \phi_{1}$ is a univalent function.

Suppose $t_{1} \in T_{1} \cap \phi_{1}^{-1} \circ \phi_{2}\left[T_{2}\right]$. Let $\left(U, \Phi, \mathbf{U}^{n}\right)$ be such that U is an open subsets of $V, \phi_{1}\left(t_{1}\right) \in U$, $\left(U, \Phi, \mathbf{U}^{n}\right) \in \mathbf{D i f f e o}_{n}, \Phi\left(\phi_{1}\left(t_{1}\right)\right)=0$ and $\Phi[M \cap U]=\mathbf{U}^{m, n}$. We have shown above that

$$
p_{m, n} \circ \Phi \circ \phi_{i} \in \text { Diffeo }_{m}, \quad i=1,2 .
$$

Since

$$
\left(\phi_{2}^{-1} \circ \phi_{1}\right) \mid \phi_{1}^{-1}\left[U \cap \phi_{2}\left[T_{2}\right]\right]=\left(p_{m, n} \circ \Phi \circ \phi_{2}\right)^{-1} \circ\left(p_{m, n} \circ \Phi \circ \phi_{1}\right)
$$

and since $\phi_{1}^{-1}\left[U \cap \phi_{2}\left[T_{2}\right]\right]$ is an open subset of \mathbf{R}^{m} containing t_{1} the proof is complete.
Lemma. Suppose $\left(T_{i}, \phi_{i}\right), i=1,2$, are local parameters for $M, f \in \mathcal{L}_{M}^{+}$and

$$
f(a)=0 \quad \text { whenever } a \in \phi_{1}\left[T_{1}\right] \cap \phi_{1}\left[T_{2}\right] .
$$

Then

$$
\int_{T_{1}} f \circ \phi_{1} J_{m} \phi_{1}=\int_{T_{2}} f \circ \phi_{2} J_{m} \phi_{2}
$$

Proof. Replacing T_{1} with $\phi_{1}^{-1}\left[T_{2}\right]$ and T_{2} by $\phi_{2}^{-1}\left[T_{1}\right]$ we may assume that $\phi_{1}\left[T_{1}\right]=\phi_{2}\left[T_{2}\right]$. From the preceding work we have that $\left(T_{1}, \phi_{2}^{-1} \circ \phi_{1}, T_{2}\right) \in$ Diffeo $_{m}$. From the Change of Variables Formula for Multiple Intgrals we infer that

$$
\int_{T_{2}} f \circ \phi_{2} J_{m} \phi_{2}=\int_{T_{1}} f \circ \phi_{2} \circ\left(\phi_{2}^{-1} \circ \phi_{1}\right) J_{m} \phi_{2} \circ\left(\phi_{2}^{-1} \circ \phi_{1}\right)\left|\operatorname{det} \partial\left(\phi_{2}^{-1} \circ \phi_{1}\right)\right| .
$$

The Lemma will follow if we can show that

$$
J_{m} \phi_{1}=\left(J_{m} \phi_{2}\right) \circ\left(\phi_{2}^{-1} \circ \phi_{1}\right) \mid \operatorname{det} \partial\left(\phi_{2}^{-1} \circ \phi_{1}\right) .
$$

Suppose $t_{1} \in T_{1}$ and let $t_{2}=\phi_{2}^{-1} \circ \phi_{1}\left(t_{1}\right) \in T_{2}$. By the Chain Rule we have

$$
\partial \phi_{1}\left(t_{1}\right)=\partial \phi_{2}\left(t_{2}\right) \circ \partial\left(\phi_{2}^{-1} \circ \phi_{1}\right)\left(t_{1}\right)
$$

so that

$$
\partial \phi_{1}\left(t_{1}\right)^{*}=\partial\left(\phi_{2}^{-1} \circ \phi_{1}\right)\left(t_{1}\right)^{*} \circ \partial \phi_{2}\left(t_{2}\right)^{*}
$$

Thus

$$
\begin{aligned}
& \partial \phi_{1}\left(t_{1}\right)^{*} \circ \partial \phi_{1}\left(t_{1}\right) \\
&=\left(\partial\left(\phi_{2}^{-1} \circ \phi_{1}\right)\left(t_{1}\right)^{*} \circ \partial \phi_{2}\left(t_{2}\right)^{*}\right) \circ\left(\partial \phi_{2}\left(t_{2}\right) \circ \partial\left(\phi_{2}^{-1} \circ \phi_{1}\right)\left(t_{1}\right)\right) \\
& \quad=\partial\left(\phi_{2}^{-1} \circ \phi_{1}\right)\left(t_{1}\right)^{*} \circ\left(\partial \phi_{2}\left(t_{2}\right)^{*} \circ \partial \phi_{2}\left(t_{2}\right)\right) \circ \partial\left(\phi_{2}^{-1} \circ \phi_{1}\right)\left(t_{1}\right)
\end{aligned}
$$

so that, by the Product Rule for Determinants and the fact that

$$
\operatorname{det} L^{*}=\operatorname{det} L \quad \text { whenever } L \in \mathbf{L}\left(\mathbf{R}^{m} ; \mathbf{R}^{m}\right)
$$

we find that

$$
J_{m} \phi_{1}\left(t_{1}\right)=\left|\operatorname{det} \partial\left(\phi_{2}^{-1} \circ \phi_{1}\right)\left(t_{1}\right)\right| J_{m} \phi_{2}\left(t_{2}\right)
$$

Lemma. There is a countable family \mathcal{T} of smooth local parameters for M such that

$$
M=\cup\{T:(T, \phi) \in \mathcal{T}\}
$$

Proof. Exercise for the reader.
Lemma. Suppose $f \in \mathcal{L}_{M}^{+}$and
(1) $\left(S_{\mu}, \alpha\right), \mu=1,2,3, \ldots$, are smooth local parameters for M;
(2) $\cup_{\mu=1}^{\infty} \mathbf{r n g} \alpha_{\mu}=M$;
(3) $A_{1}=\mathbf{r n g} \alpha_{1}$ and $A_{\mu}=\boldsymbol{r n g} \alpha_{\nu} \sim \cup_{\gamma<\mu} \mathbf{r n g} \alpha_{\gamma}$ if $m u>1$;

$$
\begin{equation*}
I=\sum_{\mu=1}^{\infty} \int_{S_{\mu}}\left(f 1_{A_{\mu}}\right) \circ \alpha_{\mu} J_{m} \alpha_{\mu} \tag{4}
\end{equation*}
$$

(5) $\left(T_{\nu}, \beta_{\nu}\right), \nu=1,2,3, \ldots$, are smooth local parameters for M;
(6) $\cup_{\nu=1}^{\infty} \mathbf{r n g} \beta_{\nu}=M$;
(7) $B_{1}=\mathbf{r n g} \beta_{1}$ and $B_{\nu}=\mathbf{r n g} \beta_{\nu} \sim \cup_{\delta<\nu} \mathbf{r n g} \beta_{\delta}$;

$$
\begin{equation*}
J=\sum_{\nu=1}^{\infty} \int_{T_{\nu}}\left(f 1_{B_{\nu}}\right) \circ \beta_{\nu} J_{m} \beta_{\nu} \tag{8}
\end{equation*}
$$

Then

$$
I=J
$$

Proof. We have

$$
1_{M}=\sum_{\mu=1}^{\infty} 1_{A_{\mu}} \quad \text { and } \quad 1_{N}=\sum_{\nu=1}^{\infty} 1_{B_{\nu}}
$$

Thus

$$
I=\sum_{\mu=1}^{\infty} \sum_{\nu=1}^{\infty} \int_{S_{\mu}}\left(f 1_{A_{\mu}} 1_{B_{\nu}}\right) J_{m} \alpha_{\mu} \quad \text { and } \quad J=\sum_{\nu=1}^{\infty} \sum_{\mu=1}^{\infty} \int_{T_{\nu}}\left(f 1_{A_{\mu}} 1_{B_{\nu}}\right) \circ \beta_{\nu} J_{m} \beta_{\nu}
$$

(Why?) That $I=J$ now follows from a previous Proposition.
Theorem. There is one and only one function

$$
I_{M}^{+}: \mathcal{L}_{M}^{+} \rightarrow[0, \infty]
$$

such that
(1) $I_{M}^{+}\left(\sum_{\nu=0}^{\infty} f_{\nu}\right)=\sum_{\nu=0}^{\infty} I_{M}^{+}\left(f_{\nu}\right)$ whenever f is a sequence in \mathcal{L}_{M}^{+};
(2) $I_{M}^{+}(f)=\int_{T} f \circ \phi J_{m} \phi$ whenever $f \in \mathcal{M}$ and $f(a)=0$ whenever $a \notin \mathbf{r n g} \phi$.

Proof. Combine the preceding two Lemmas.
Definition. We let

$$
\mathcal{L}_{M}
$$

be the vector space of Lebesgue measurable function $f: M \rightarrow \mathbf{R}$ such that $I_{M}^{+}(|f|)<\infty$. For each $f \in \mathcal{L}_{M}$ we let

$$
I_{M}(f)=I_{M}^{+}\left(f^{+}\right)-I_{M}^{+}\left(f^{-}\right)
$$

