Integration of a scalar function over a submanifold.

Suppose n is a positive integer, V is an n-dimensional inner product space, $0 \le m < n$ and $M \in \mathbf{M}_m(V)$.

Definition. We say (T, ϕ) is a smooth local parameter for M if

- (1) T is an open subset of \mathbf{R}^m ;
- (2) $\phi: T \to V$ is smooth;
- (3) $\operatorname{\mathbf{rng}} \phi \subset M$;
- (4) ϕ is univalent;
- (5) $\dim \operatorname{rng} \partial \phi(t) = m$ whenever $t \in T$.

If (T, ϕ) is a smooth local parameter for M we define the smooth function

$$J_m\phi: T \to (0,\infty),$$

the *m*-Jacobian of ϕ , by letting

$$J_m \phi(t) = \sqrt{\det \partial \phi(t)^* \circ \partial \phi(t)} \quad \text{whenever } t \in T.$$

We say a function f on M with values in a topological space is **Lebesgue measurable** if $f \circ \phi$ is Lebesgue measurable whenever (T, ϕ) is a local coordinate for M.

We let

 \mathcal{L}_{M}^{+}

be the family of Lebesgue measurable functions.

Remark. Suppose $a \in M$. Then there are an open subset U of V and (U, Φ, \mathbf{U}^n) such that $a \in U$, $\Phi(a) = 0$ and $\Phi[M \cap U] = \mathbf{U}^{m,n}$. It follows that $(\mathbf{U}^{m,n}, \Phi^{-1} \circ i_{m,n})$ is a local parameter for M whose range contains a.

We say (W, ψ) is a smooth local coordinate for M if

- (1) W is a subset of M which is open relative to V;
- (2) $\psi: W \to \mathbf{R}^m;$
- (3) $(\psi[W], \psi^{-1})$ is a smooth local parameter for M.

Theorem. Suppose

- (1) (T, ϕ) is a smooth local parameter for M;
- (2) U is an open subset of V and $\phi(t) \in U$;
- (3) $(U, \Phi, \mathbf{U}^n) \in \mathbf{Diffeo}_n, \Phi(\phi(t)) = 0 \text{ and } \Phi[M \cap U] = \mathbf{U}^{m,n}.$

Then

(4)
$$p_{m,n} \circ \Phi \circ \phi \in \mathbf{Diffeo}_m.$$

Proof. Let $F = p_{m,n} \circ \Phi \circ \phi$. Then $\operatorname{dmn} F = T \cap \phi^{-1}[U]$ which is an open subset of \mathbb{R}^m , F is smooth and F is univalent. Moreover, by the Chain Rule, we have that $\operatorname{rng} \partial f(u) = \mathbb{R}^m$ whenever $u \in \operatorname{dmn} F$. The assertion to be proved now follows from a Corollary to the Inverse Function Theorem. \Box

Suppose (U, ψ) is a smooth local coordinate for M. then $(\psi[U], \psi^{-1})$ is a smooth local Corollary. parameter for M.

Proof. We have only to verify that $\psi[U]$ is open relative to M and this follows directly from the preceding Proposition. \Box

Corollary. Suppose (T_i, ϕ_i) , i = 1, 2, are smooth local parameters for M

$$(T_1 \cap \phi_1^{-1} \circ \phi_2[T_2], \phi_2^{-1} \circ \phi_1, T_2 \cap \phi_2^{-1} \circ \phi_1[T_1]) \in \mathbf{Diffeo}_m.$$

Proof. It is evident that the $T_1 \cap \phi_1^{-1}[T_2]$ and $T_2 \cap \phi_2^{-1}[T_2]$ are open sets of \mathbb{R}^m which are the domain and range of $\phi_2^{-1} \circ \phi_1$. It is evident that $\phi_2^{-1} \circ \phi_1$ is a univalent function. Suppose $t_1 \in T_1 \cap \phi_1^{-1} \circ \phi_2[T_2]$. Let (U, Φ, \mathbf{U}^n) be such that U is an open subsets of V, $\phi_1(t_1) \in U$, $(U, \Phi, \mathbf{U}^n) \in \mathbf{Diffeo}_n, \Phi(\phi_1(t_1)) = 0$ and $\Phi[M \cap U] = \mathbf{U}^{m,n}$. We have shown above that

$$p_{m,n} \circ \Phi \circ \phi_i \in \mathbf{Diffeo}_m, \ i = 1, 2$$

Since

$$(\phi_2^{-1} \circ \phi_1) | \phi_1^{-1} [U \cap \phi_2 [T_2]] = (p_{m,n} \circ \Phi \circ \phi_2)^{-1} \circ (p_{m,n} \circ \Phi \circ \phi_1)$$

and since $\phi_1^{-1}[U \cap \phi_2[T_2]]$ is an open subset of \mathbf{R}^m containing t_1 the proof is complete. \Box

Lemma. Suppose (T_i, ϕ_i) , i = 1, 2, are local parameters for $M, f \in \mathcal{L}_M^+$ and

$$f(a) = 0$$
 whenever $a \in \phi_1[T_1] \cap \phi_1[T_2]$.

Then

$$\int_{T_1} f \circ \phi_1 J_m \phi_1 = \int_{T_2} f \circ \phi_2 J_m \phi_2$$

Proof. Replacing T_1 with $\phi_1^{-1}[T_2]$ and T_2 by $\phi_2^{-1}[T_1]$ we may assume that $\phi_1[T_1] = \phi_2[T_2]$. From the preceding work we have that $(T_1, \phi_2^{-1} \circ \phi_1, T_2) \in \mathbf{Diffeo}_m$. From the Change of Variables Formula for Multiple Intgrals we infer that

$$\int_{T_2} f \circ \phi_2 J_m \phi_2 = \int_{T_1} f \circ \phi_2 \circ (\phi_2^{-1} \circ \phi_1) J_m \phi_2 \circ (\phi_2^{-1} \circ \phi_1) |\det \partial(\phi_2^{-1} \circ \phi_1)|$$

The Lemma will follow if we can show that

$$J_m\phi_1 = (J_m\phi_2) \circ (\phi_2^{-1} \circ \phi_1) |\det \partial(\phi_2^{-1} \circ \phi_1).$$

Suppose $t_1 \in T_1$ and let $t_2 = \phi_2^{-1} \circ \phi_1(t_1) \in T_2$. By the Chain Rule we have

$$\partial \phi_1(t_1) = \partial \phi_2(t_2) \circ \partial (\phi_2^{-1} \circ \phi_1)(t_1)$$

so that

$$\partial \phi_1(t_1)^* = \partial (\phi_2^{-1} \circ \phi_1)(t_1)^* \circ \partial \phi_2(t_2)^*.$$

Thus

$$\begin{aligned} \partial \phi_1(t_1)^* &\circ \partial \phi_1(t_1) \\ &= \left(\partial (\phi_2^{-1} \circ \phi_1)(t_1)^* \circ \partial \phi_2(t_2)^* \right) \circ \left(\partial \phi_2(t_2) \circ \partial (\phi_2^{-1} \circ \phi_1)(t_1) \right) \\ &= \partial (\phi_2^{-1} \circ \phi_1)(t_1)^* \circ \left(\partial \phi_2(t_2)^* \circ \partial \phi_2(t_2) \right) \circ \partial (\phi_2^{-1} \circ \phi_1)(t_1) \end{aligned}$$

so that, by the Product Rule for Determinants and the fact that

det $L^* = \det L$ whenever $L \in \mathbf{L}(\mathbf{R}^m; \mathbf{R}^m)$

we find that

$$J_m \phi_1(t_1) = |\det \partial (\phi_2^{-1} \circ \phi_1)(t_1)| J_m \phi_2(t_2)$$

Lemma. There is a countable family \mathcal{T} of smooth local parameters for M such that

$$M = \bigcup \{T : (T, \phi) \in \mathcal{T}\}.$$

Proof. Exercise for the reader. \Box

Lemma. Suppose $f \in \mathcal{L}_M^+$ and

- (1) $(S_{\mu}, \alpha), \mu = 1, 2, 3, \ldots$, are smooth local parameters for M;
- (2) $\cup_{\mu=1}^{\infty}$ **rng** $\alpha_{\mu} = M$;
- (3) $A_1 = \operatorname{\mathbf{rng}} \alpha_1$ and $A_\mu = \operatorname{\mathbf{rng}} \alpha_\nu \sim \cup_{\gamma < \mu} \operatorname{\mathbf{rng}} \alpha_\gamma$ if mu > 1;
- (4)

$$I = \sum_{\mu=1}^{\infty} \int_{S_{\mu}} (f \, 1_{A_{\mu}}) \circ \alpha_{\mu} J_m \alpha_{\mu};$$

 $(5)(T_{\nu},\beta_{\nu}), \nu = 1,2,3,\ldots$, are smooth local parameters for M;

(6) $\bigcup_{\nu=1}^{\infty} \operatorname{rng} \beta_{\nu} = M;$ (7) $B_1 = \operatorname{rng} \beta_1$ and $B_{\nu} = \operatorname{rng} \beta_{\nu} \sim \bigcup_{\delta < \nu} \operatorname{rng} \beta_{\delta};$ (8)

$$J = \sum_{\nu=1}^{\infty} \int_{T_{\nu}} (f \, \mathbf{1}_{B_{\nu}}) \circ \beta_{\nu} J_m \beta_{\nu}$$

Then

$$I = J$$

Proof. We have

$$1_M = \sum_{\mu=1}^{\infty} 1_{A_{\mu}}$$
 and $1_N = \sum_{\nu=1}^{\infty} 1_{B_{\nu}}$.

Thus

$$I = \sum_{\mu=1}^{\infty} \sum_{\nu=1}^{\infty} \int_{S_{\mu}} (f \, 1_{A_{\mu}} 1_{B_{\nu}}) \, J_m \alpha_\mu \quad \text{and} \quad J = \sum_{\nu=1}^{\infty} \sum_{\mu=1}^{\infty} \int_{T_{\nu}} (f \, 1_{A_{\mu}} 1_{B_{\nu}}) \circ \beta_{\nu} J_m \beta_{\nu}.$$

(Why?) That I = J now follows from a previous Proposition. \Box

Theorem. There is one and only one function

$$I_M^+:\mathcal{L}_M^+\to [0,\infty]$$

such that

(1)
$$I_M^+(\sum_{\nu=0}^{\infty} f_{\nu}) = \sum_{\nu=0}^{\infty} I_M^+(f_{\nu})$$
 whenever f is a sequence in \mathcal{L}_M^+ ;
(2) $I_M^+(f) = \int_T f \circ \phi J_m \phi$ whenever $f \in \mathcal{M}$ and $f(a) = 0$ whenever $a \notin \mathbf{rng} \phi$.

Proof. Combine the preceding two Lemmas. \Box

Definition. We let

 \mathcal{L}_M

be the vector space of Lebesgue measurable function $f: M \to \mathbf{R}$ such that $I_M^+(|f|) < \infty$. For each $f \in \mathcal{L}_M$ we let

$$I_M(f) = I_M^+(f^+) - I_M^+(f^-).$$