1. INTRODUCTION TO THE THEORY OF INFINITE SETS.
Theorem 1.1. N is infinite.

Proof. We have N = N ~ {0} by means of S. Thus N cannot be finite since, as we
have already shown, no finite set is equipotent with a proper subset. O

Theorem 1.2. Suppose A C N and A is infinite. Then A ~ N.

Proof. We do this by defining a function by induction. Let G = {g : for some n € N,
g :I(n) — A} and define G : G — A by letting G(g) be the least element of A ~
rng g for g € G. One obtains a function f : N — A such that f(n) = G(f|I(n))
for each n € N. We leave to the reader the straightforward verification that f is
univalent with range equal to A. O

Remark 1.1. Note that in the above proof f carries n to the n-th least element
of A. Alternatively, we could use the ordering on N to induce a well ordering on A
and then use our previous results about well ordered sets.

Theorem 1.3. N® =~ N for any n € NT.

Proof. The statement is trivially true when n = 1 and will follow by induction on
n if we can show it holds for n = 2.

We now show that N ~ N x N. For each n € N we let L(n) = {(I,m) €
NxN:Il+m =n} and we let M(n) = [J{L(m) : m < n}. Note that L(n) is
finite, |L(n)] = n + 1 and that {L(n) : n € N} is a partition of N x N. We define
f: N —= N x N by requiring that f(|M (k)| +n) = (I,m) whenever 0 <n < k+1
and [ +m = n. We leave it to the reader to verify that f is univalent with range
N x N. O

Theorem 1.4. A set A is countable if and only if there is a function with domain
N and range A.

Proof. If A is countable then the existence of such a function is clear.

Suppose f: N — A and rng f = A. Let B be the set of those n € N such that,
for some a € A, n is the least element of f~![{a}]. Then, by earlier work, B is
countable and f|B is univalent with range A. O

Theorem 1.5. Suppose A is a countable family of countable sets. Then UA is
countable.

Proof. Let F : N — A have range A For each A € A let n(A4) be the set of
functions with domain N and range A. Let ¢ be a choice function for the family
{n(A) : A€ A}. Define f: N x N — A to have the value f(m,n) = c¢(F(m))(n) at
(m,n) € N x N. Note that the range of f equals A. Thus, as A is the image of a
countable set, it is countable. [l

Theorem 1.6. {F: F' C N and F is finite} is countable.

Proof. For n € Nlet 7, = {F : F C N and |F| = n}. Let F,, : N — F,, assign

to m € N the m-th member of F, in the dictionary order. Let f : N x N —

UFn :n €N} assign F,,(m) to (m,n) € N x N. Then f has range {F : F C

N and F is finite}. O
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The following interesting Theorem uses our theory of natural numbers. It says
that cardinal numbers are linearly ordered. You can give what is in some ways a
simpler proof of this Theorem by using well ordering. The proof we give is more
constructive.

Theorem 1.7. Schroeder-Bernstein. Suppose A and B are sets such that A
is equipotent with a subset of B and B is equipotent with a subset of A. Then
A= B.

Proof. We need the following

Lemma 1.1. Suppose C is a set and h : C — C' is univalent. Let h%(z) = x for
x € C and let h"*1 = ho h™ for n € N. For each n € N let C,, = h"[C] ~ h"T1[C].
Let Coo = N32oh™[C]. Then

(Al Upi—p Cam) U (h™| UZ_g Com+1) U (h|Cox)
is a univalent function with domain and range equal to C.

Proof. Evidently, {C), : n € N} U {C} is a partition of C. For n € N we have
h[Com] = Copmy1 and h=1[Copni1] = Cap as well as h[Coo] = Cuo. ]

Remark 1.2. The set C), and the functions A" are constructed by induction. We
are also using here that for each n € N there is a unique m € N such that either
n=2morn=2m+1.

Proof. We leave this as a straightforward exercise for the reader. O

We may suppose that ANB = 0. Let C = AUB and let h : C — C be such that
h(z) = f(x) for x € A and h(z) = g(x) for x € B. Let H be the function produced
by the Lemma. Since h[A] C B, h[B] C A, h™'[A] C B and h™'[B] C A we infer
that H[A] C B and H[B] C A so range H|A = B. O

Theorem 1.8.
1.1. Corollary. 2" is uncountable.

Proof. A set is countable if and only if it equals the range of a function with domain
N. Thus, were 2~ countable, there would exist a function f with domain N and
range 2N which is impossible by virtue of a preceding Theorem. ([

Theorem 1.9. 2N ~ NV,

Proof. Define f : 2% — NN by requiring that, for each X C N, f(X) is 1 on X and
0 on N~ X. Note that f is univalent. Let J be a univalent function on N x N with
range equal to N. Define g : NN — 2N by requiring that g(u) = J[ u] for p € NV,
Note that g is univalent. Apply the Schroeder-Bernstein Theorem to complete the
proof. O

Theorem 1.10. Suppose A is a countable subset of 2N. Then 2V ~ A ~ 2N,

Proof. We will prove the statement obtained from the theorem by replacing each
occurrence of 2V by ‘NN, Let F : N — A be such that rng F = A. Define
f:NY — NN ~ A by letting f(a)(n) = a(n) + F(n)(n) + 1 for n € N. Note that f
is univalent. Apply the Schroeder-Bernstein Theorem to complete the proof. O



