1. INTRODUCTION TO THE THEORY OF INFINITE SETS.

Theorem 1.1. \mathbb{N} is infinite.
Proof. We have $\mathbb{N} \approx \mathbb{N} \sim\{0\}$ by means of S. Thus \mathbb{N} cannot be finite since, as we have already shown, no finite set is equipotent with a proper subset.

Theorem 1.2. Suppose $A \subset \mathbb{N}$ and A is infinite. Then $A \approx \mathbb{N}$.
Proof. We do this by defining a function by induction. Let $\mathcal{G}=\{g$: for some $n \in \mathbb{N}$, $g: \mathbb{I}(n) \rightarrow A\}$ and define $G: \mathcal{G} \rightarrow A$ by letting $G(g)$ be the least element of $A \sim$ $\operatorname{rng} g$ for $g \in \mathcal{G}$. One obtains a function $f: \mathbb{N} \rightarrow A$ such that $f(n)=G(f \mid \mathbb{I}(n))$ for each $n \in \mathbb{N}$. We leave to the reader the straightforward verification that f is univalent with range equal to A.

Remark 1.1. Note that in the above proof f carries n to the n-th least element of A. Alternatively, we could use the ordering on \mathbf{N} to induce a well ordering on A and then use our previous results about well ordered sets.

Theorem 1.3. $\mathbb{N}^{n} \approx \mathbb{N}$ for any $n \in \mathbb{N}^{+}$.
Proof. The statement is trivially true when $n=1$ and will follow by induction on n if we can show it holds for $n=2$.

We now show that $\mathbb{N} \approx \mathbb{N} \times \mathbb{N}$. For each $n \in \mathbf{N}$ we let $L(n)=\{(l, m) \in$ $\mathbb{N} \times \mathbb{N}: l+m=n\}$ and we let $M(n)=\bigcup\{L(m): m<n\}$. Note that $L(n)$ is finite, $|L(n)|=n+1$ and that $\{L(n): n \in \mathbb{N}\}$ is a partition of $\mathbb{N} \times \mathbb{N}$. We define $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbf{N}$ by requiring that $f(|M(k)|+n)=(l, m)$ whenever $0 \leq n<k+1$ and $l+m=n$. We leave it to the reader to verify that f is univalent with range $\mathbb{N} \times \mathbb{N}$.

Theorem 1.4. A set A is countable if and only if there is a function with domain \mathbb{N} and range A.

Proof. If A is countable then the existence of such a function is clear.
Suppose $f: \mathbb{N} \rightarrow A$ and $\mathbf{r n g} f=A$. Let B be the set of those $n \in \mathbb{N}$ such that, for some $a \in A, n$ is the least element of $f^{-1}[\{a\}]$. Then, by earlier work, B is countable and $f \mid B$ is univalent with range A.

Theorem 1.5. Suppose \mathcal{A} is a countable family of countable sets. Then $\cup \mathcal{A}$ is countable.

Proof. Let $F: \mathbb{N} \rightarrow \mathcal{A}$ have range \mathcal{A} For each $A \in \mathcal{A}$ let $\mathbf{n}(A)$ be the set of functions with domain \mathbb{N} and range A. Let c be a choice function for the family $\{\mathbf{n}(A): A \in \mathcal{A}\}$. Define $f: \mathbf{N} \times \mathbb{N} \rightarrow A$ to have the value $f(m, n)=c(F(m))(n)$ at $(m, n) \in \mathbb{N} \times \mathbb{N}$. Note that the range of f equals A. Thus, as A is the image of a countable set, it is countable.

Theorem 1.6. $\{F: F \subset \mathbb{N}$ and F is finite $\}$ is countable.
Proof. For $n \in \mathbb{N}$ let $\mathcal{F}_{n}=\{F: F \subset \mathbb{N}$ and $|F|=n\}$. Let $F_{n}: \mathbf{N} \rightarrow \mathcal{F}_{n}$ assign to $m \in \mathbb{N}$ the m-th member of \mathcal{F}_{n} in the dictionary order. Let $f: \mathbb{N} \times \mathbf{N} \rightarrow$ $\left.\bigcup \mathcal{F}_{n}: n \in \mathbb{N}\right\}$ assign $F_{n}(m)$ to $(m, n) \in \mathbb{N} \times \mathbb{N}$. Then f has range $\{F: F \subset$ \mathbb{N} and F is finite $\}$.

The following interesting Theorem uses our theory of natural numbers. It says that cardinal numbers are linearly ordered. You can give what is in some ways a simpler proof of this Theorem by using well ordering. The proof we give is more constructive.

Theorem 1.7. Schroeder-Bernstein. Suppose A and B are sets such that A is equipotent with a subset of B and B is equipotent with a subset of A. Then $A \approx B$.

Proof. We need the following
Lemma 1.1. Suppose C is a set and $h: C \rightarrow C$ is univalent. Let $h^{0}(x)=x$ for $x \in C$ and let $h^{n+1}=h \circ h^{n}$ for $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ let $C_{n}=h^{n}[C] \sim h^{n+1}[C]$. Let $C_{\infty}=\cap_{n=0}^{\infty} h^{n}[C]$. Then

$$
\left(h \mid \cup_{m=0}^{\infty} C_{2 m}\right) \cup\left(h^{-1} \mid \cup_{m=0}^{\infty} C_{2 m+1}\right) \cup\left(h \mid C_{\infty}\right)
$$

is a univalent function with domain and range equal to C.
Proof. Evidently, $\left\{C_{n}: n \in \mathbb{N}\right\} \cup\left\{C_{\infty}\right\}$ is a partition of C. For $n \in \mathbb{N}$ we have $h\left[C_{2 m}\right]=C_{2 m+1}$ and $h^{-1}\left[C_{2 m+1}\right]=C_{2 m}$ as well as $h\left[C_{\infty}\right]=C_{\infty}$.

Remark 1.2. The set C_{n} and the functions h^{n} are constructed by induction. We are also using here that for each $n \in \mathbb{N}$ there is a unique $m \in \mathbb{N}$ such that either $n=2 m$ or $n=2 m+1$.

Proof. We leave this as a straightforward exercise for the reader.
We may suppose that $A \cap B=\emptyset$. Let $C=A \cup B$ and let $h: C \rightarrow C$ be such that $h(x)=f(x)$ for $x \in A$ and $h(x)=g(x)$ for $x \in B$. Let H be the function produced by the Lemma. Since $h[A] \subset B, h[B] \subset A, h^{-1}[A] \subset B$ and $h^{-1}[B] \subset A$ we infer that $H[A] \subset B$ and $H[B] \subset A$ so range $H \mid A=B$.

Theorem 1.8.
1.1. Corollary. $2^{\mathbb{N}}$ is uncountable.

Proof. A set is countable if and only if it equals the range of a function with domain \mathbb{N}. Thus, were $2^{\mathbb{N}}$ countable, there would exist a function f with domain \mathbb{N} and range $2^{\mathbb{N}}$ which is impossible by virtue of a preceding Theorem.

Theorem 1.9. $2^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$.
Proof. Define $f: 2^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ by requiring that, for each $X \subset \mathbb{N}, f(X)$ is 1 on X and 0 on $\mathbb{N} \sim X$. Note that f is univalent. Let J be a univalent function on $\mathbb{N} \times \mathbb{N}$ with range equal to \mathbb{N}. Define $g: \mathbb{N}^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by requiring that $g(\mu)=J[\mu]$ for $\mu \in \mathbb{N}^{\mathbb{N}}$. Note that g is univalent. Apply the Schroeder-Bernstein Theorem to complete the proof.
Theorem 1.10. Suppose A is a countable subset of $2^{\mathbb{N}}$. Then $2^{\mathbb{N}} \sim A \approx 2^{\mathbb{N}}$.
Proof. We will prove the statement obtained from the theorem by replacing each occurrence of ${ }^{\prime} 2^{\mathbb{N}}$, by ${ }^{\prime} \mathbb{N}^{\mathbb{N}}$. Let $F: \mathbb{N} \rightarrow A$ be such that rng $F=A$. Define $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} \sim A$ by letting $f(\alpha)(n)=\alpha(n)+F(n)(n)+1$ for $n \in \mathbb{N}$. Note that f is univalent. Apply the Schroeder-Bernstein Theorem to complete the proof.

