
1. Introduction to the theory of infinite sets.

Theorem 1.1. N is infinite.

Proof. We have N ≈ N ∼ {0} by means of S. Thus N cannot be finite since, as we
have already shown, no finite set is equipotent with a proper subset. ¤

Theorem 1.2. Suppose A ⊂ N and A is infinite. Then A ≈ N.

Proof. We do this by defining a function by induction. Let G = {g : for some n ∈ N,
g : I(n) → A} and define G : G → A by letting G(g) be the least element of A ∼
rng g for g ∈ G. One obtains a function f : N → A such that f(n) = G(f |I(n))
for each n ∈ N. We leave to the reader the straightforward verification that f is
univalent with range equal to A. ¤

Remark 1.1. Note that in the above proof f carries n to the n-th least element
of A. Alternatively, we could use the ordering on N to induce a well ordering on A
and then use our previous results about well ordered sets.

Theorem 1.3. Nn ≈ N for any n ∈ N+.

Proof. The statement is trivially true when n = 1 and will follow by induction on
n if we can show it holds for n = 2.

We now show that N ≈ N × N. For each n ∈ N we let L(n) = {(l, m) ∈
N × N : l + m = n} and we let M(n) =

⋃{L(m) : m < n}. Note that L(n) is
finite, |L(n)| = n + 1 and that {L(n) : n ∈ N} is a partition of N × N. We define
f : N → N ×N by requiring that f(|M(k)| + n) = (l,m) whenever 0 ≤ n < k + 1
and l + m = n. We leave it to the reader to verify that f is univalent with range
N× N. ¤

Theorem 1.4. A set A is countable if and only if there is a function with domain
N and range A.

Proof. If A is countable then the existence of such a function is clear.
Suppose f : N→ A and rng f = A. Let B be the set of those n ∈ N such that,

for some a ∈ A, n is the least element of f−1[{a}]. Then, by earlier work, B is
countable and f |B is univalent with range A. ¤

Theorem 1.5. Suppose A is a countable family of countable sets. Then ∪A is
countable.

Proof. Let F : N → A have range A For each A ∈ A let n(A) be the set of
functions with domain N and range A. Let c be a choice function for the family
{n(A) : A ∈ A}. Define f : N×N→ A to have the value f(m,n) = c(F (m))(n) at
(m,n) ∈ N × N. Note that the range of f equals A. Thus, as A is the image of a
countable set, it is countable. ¤

Theorem 1.6. {F : F ⊂ N and F is finite} is countable.

Proof. For n ∈ N let Fn = {F : F ⊂ N and |F | = n}. Let Fn : N → Fn assign
to m ∈ N the m-th member of Fn in the dictionary order. Let f : N × N →⋃Fn : n ∈ N} assign Fn(m) to (m,n) ∈ N × N. Then f has range {F : F ⊂
N and F is finite}. ¤
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The following interesting Theorem uses our theory of natural numbers. It says
that cardinal numbers are linearly ordered. You can give what is in some ways a
simpler proof of this Theorem by using well ordering. The proof we give is more
constructive.

Theorem 1.7. Schroeder-Bernstein. Suppose A and B are sets such that A
is equipotent with a subset of B and B is equipotent with a subset of A. Then
A ≈ B.

Proof. We need the following

Lemma 1.1. Suppose C is a set and h : C → C is univalent. Let h0(x) = x for
x ∈ C and let hn+1 = h ◦ hn for n ∈ N. For each n ∈ N let Cn = hn[C] ∼ hn+1[C].
Let C∞ = ∩∞n=0h

n[C]. Then

(h| ∪∞m=0 C2m) ∪ (h−1| ∪∞m=0 C2m+1) ∪ (h|C∞)

is a univalent function with domain and range equal to C.

Proof. Evidently, {Cn : n ∈ N} ∪ {C∞} is a partition of C. For n ∈ N we have
h[C2m] = C2m+1 and h−1[C2m+1] = C2m as well as h[C∞] = C∞. ¤
Remark 1.2. The set Cn and the functions hn are constructed by induction. We
are also using here that for each n ∈ N there is a unique m ∈ N such that either
n = 2m or n = 2m + 1.

Proof. We leave this as a straightforward exercise for the reader. ¤
We may suppose that A∩B = ∅. Let C = A∪B and let h : C → C be such that

h(x) = f(x) for x ∈ A and h(x) = g(x) for x ∈ B. Let H be the function produced
by the Lemma. Since h[A] ⊂ B, h[B] ⊂ A, h−1[A] ⊂ B and h−1[B] ⊂ A we infer
that H[A] ⊂ B and H[B] ⊂ A so range H|A = B. ¤
Theorem 1.8.

1.1. Corollary. 2N is uncountable.

Proof. A set is countable if and only if it equals the range of a function with domain
N. Thus, were 2N countable, there would exist a function f with domain N and
range 2N which is impossible by virtue of a preceding Theorem. ¤
Theorem 1.9. 2N ≈ NN.
Proof. Define f : 2N → NN by requiring that, for each X ⊂ N, f(X) is 1 on X and
0 on N ∼ X. Note that f is univalent. Let J be a univalent function on N×N with
range equal to N. Define g : NN → 2N by requiring that g(µ) = J [ µ] for µ ∈ NN.
Note that g is univalent. Apply the Schroeder-Bernstein Theorem to complete the
proof. ¤
Theorem 1.10. Suppose A is a countable subset of 2N. Then 2N ∼ A ≈ 2N.

Proof. We will prove the statement obtained from the theorem by replacing each
occurrence of ’2N’ by ’NN’. Let F : N → A be such that rng F = A. Define
f : NN → NN ∼ A by letting f(α)(n) = α(n) + F (n)(n) + 1 for n ∈ N. Note that f
is univalent. Apply the Schroeder-Bernstein Theorem to complete the proof. ¤


