The Implicit Function Theorem. Suppose

- (1) X, Y and Z are Banach spaces;
- (2) C is an open subset of $X \times Y$,

$$f: C \to Z$$

and f is continuously differentiable on C;

(3) $(a, b) \in C$ and

$$Y \ni v \mapsto \partial f(a,b)(0,v)$$

is a Banach space isomorphism from Y onto Z;

Then there are an open subset U of X such that $a \in U$; an open subset W of Z such that $f(a,b) \in W$; an open subset V of $X \times Y$ such that $(a,b) \in V \subset C$; and g such that

(4) $g: U \times W \to Y$ and g is continuously differentiable on $U \times W$;

(5)

$$(x,y) \in V$$
 and $z = f(x,y) \quad \Leftrightarrow \quad (x,z) \in U \times W$ and $y = g(x,z)$.

0.1. Remark. Note that $C = \{(x, g(x, z)) : (x, z) \in U \times W\}.$

Proof. Let F(x, y) = (x, f(x, y)) for $x \in C$. By the Corollary to the Inverse Function Theorem, the Chain Rule and the smoothness of inversion we obtain an open subset D of X such that $(a, b) \in D \subset C$ and

- (6) F[D] is an open subset of $Y \times Z$;
- (7) F|D is univalent;
- (8) $(F|D)^{-1}$ is continuously differentiable.

Let U and W be open subsets of Y and Z, respectively, such that $a \in U, c \in W$ and $U \times W \subset F[D]$. Let $G = (F|D)^{-1}$ and let $V = G[U \times W]$. Let $g : U \times W \to Y$ and $i : U \times V \to X$ be such that G(x, z) = (i(x, z), g(x, z)) whenever $(x, z) \in U \times W$. Since

$$(x,z) = F(G(x,z)) = (i(x,z), f(x,g(x,z)))$$
 whenever $(x,z) \in U \times W$

we find that

i(x, z) = x whenever $(x, z) \in U \times W$.

We have only to let $V = G[U \times W]$.

The Theorem on Functional Dependence. Suppose

(1) m and n are positive integers

(2) C is an open subset of $\mathbf{R}^m \times \mathbf{R}^n$,

$$f: C \to \mathbf{R}^n$$

and f is continuously differentiable;

(3) $(a, b) \in C$ and

$$\mathbf{R}^n \ni v \mapsto \partial f(a, b)(0, v)$$

carries \mathbf{R}^n isomorphically onto itself;

(4) $\varphi: C \to \mathbf{R}, \varphi$ is continuously differentiable and

$$\partial \varphi(x,y) \in \mathbf{span} \{ \partial f^i(x,y); i = 1, \dots, n \}$$

whenever $(x, y) \in C$.

Then there are an open subset W of \mathbf{R}^n such that $f(a,b) \in V$, an open subset V of $\mathbf{R}^m \times \mathbf{R}^n$ such that $(a,b) \in V \subset C$ and Φ such that

$$\Phi: W \to \mathbf{R},$$

$$\begin{array}{ll} f(x,y)\in W \mbox{ if } (x,y)\in V \mbox{ and} \\ (5) \qquad \qquad \varphi(x,y)=\Phi(f(x,y)) \mbox{ whenever } (x,y)\in V \end{array}$$

Proof. We use the previous Theorem to obtain an open subset U of \mathbb{R}^m such that $a \in U$; an open subset W of \mathbb{R}^n such that $f(a,b) \in W$; an open subset V of $\mathbb{R}^m \times \mathbb{R}^n$ such that $(a,b) \in V \subset C$; and g such that

(5) $g: U \times W \to V$ and g is continuously differentiable;

(6)
$$(x,y) \in V \text{ and } z = f(x,y) \quad \Leftrightarrow \quad (x,z) \in U \times W \text{ and } y = g(x,z).$$

We may assume that U is connected.

It follows from (4) that there is a unique function c on V with values in the dual space of \mathbb{R}^n such that

$$\partial \varphi(x,y) = c(x,y) \circ \partial f(x,y)$$
 whenever $(x,y) \in V$.

Let G(x,z)=(x,g(x,z)) and let q(x,z)=z for $(x,z)\in U\times W.$ From the Chain Rule we obtain

$$\begin{aligned} \partial(\varphi \circ G)(x,z) &= \partial\varphi(G(x,z)) \circ \partial G(x,z) \\ &= c(G(x,z)) \circ \partial f(G(x,z)) \circ \partial G(x,z) \\ &= c(G(x,z)) \circ \partial (f \circ G)(x,z) \\ &= c(G(x,z)) \circ q \end{aligned}$$

so that

 $\partial(\varphi \circ G)(x,z)(u,0) = 0$ whenever $u \in \mathbf{R}^m$

whenever $(x, z) \in U \times W$. Thus, as U is connected, we infer that

$$\varphi(x, g(x, z)) = \varphi(a, g(a, z))$$
 whenever $(x, z) \in U \times W$.

Let

$$\Phi(z) = \varphi(a, g(a, z)) \text{ for } z \in W.$$

Evidently, $\varphi \circ G(x, z) = \Phi(f(G(x, z)))$ for $(x, z) \in U \times W$ from which we infer that (5) holds.