1. Homework Eight. Due Friday, October 23.

1.1. An exercise on difference quotients. Suppose I is an open interval, $a \in I$, $f: I \rightarrow \mathbb{R}$ and f is differentiable at a.

Show that for each $\epsilon>0$ there is $\delta>0$ such that

$$
a-\delta<x<a \text { and } a<y<a+\delta \Rightarrow\left|\frac{f(y)-f(x)}{y-x}-f^{\prime}(a)\right|<\epsilon
$$

Show by example that it is not necessarily the case that

$$
a<x<a+\delta \text { and } a<y<a+\delta \Rightarrow\left|\frac{f(y)-f(x)}{y-x}-f^{\prime}(a)\right|<\epsilon
$$

1.2. An exercise on differentiation. Suppose I is an open interval, $a \in I, f$: $I \rightarrow \mathbb{R}, f$ is differentiable at each point of $I \sim\{a\}, f$ is continous at a and

$$
\lim _{x \rightarrow a} f^{\prime}(x)=L
$$

for some $L \in \mathbb{R}$. Prove that f is differentiable at a and $f^{\prime}(a)=L$.
1.3. A very useful example. We define

$$
\phi: \mathbb{R} \rightarrow \mathbb{R}
$$

by requiring that

$$
\phi(x)= \begin{cases}0 & \text { if } x \leq 0 \\ e^{-\frac{1}{x}} & \text { if } x>0\end{cases}
$$

Show that

$$
\operatorname{dmn} \phi^{(m)}=\mathbb{R} \quad \text { for each } m \in \mathbb{N}
$$

I suggest you proceed as follows.
(i) Use the chain rule and other rules for differentiation to show that

$$
\mathbb{R} \sim\{0\} \subset \operatorname{dmn} \phi^{(m)} \quad \text { for each } m \in \mathbb{N}
$$

(ii) Show by induction that there is for each $m \in \mathbb{N}$ a polynomial function $p_{m}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\phi^{(m)}(x)=e^{-\frac{1}{x}} p_{m}(x) \quad \text { whenever } x>0
$$

(iii) Show that

$$
\lim _{x \downarrow 0} e^{-\frac{1}{x}} \frac{1}{x^{N}}=0 \quad \text { whenever } N \in \mathbb{N}
$$

(iv) Use (ii) and (iii) to show that

$$
\lim _{x \rightarrow 0} \phi^{(m)}(x)=0
$$

for any $m \in \mathbb{N}$.
(v) Use 1. above to show that $0 \in \operatorname{dmn} \phi^{(m)}$ and $\phi^{(m)}(0)=0$ for any $m \in \mathbb{N}$.
1.4. Centered differences. Suppose I is an open interval, $f: I \rightarrow \mathbb{R}$ and f is three times differentiable at each point of I. Let

$$
M=\sup \left\{\left|f^{(3)}(x)\right|: x \in I\right\}
$$

Use Taylor's theorem to show that

$$
\left|\frac{f(a+h)-f(a-h)}{2 h}-f^{\prime}(a)\right| \leq \frac{M h^{2}}{3}
$$

1.5. Uniform convergence and differentiation. Suppose I is an open interval and f is a sequence of \mathbb{R} valued functions on I with the property that it and the sequence of derivatives converges uniformly on I to F and G, respectively. Show that F is differentiable at each point of I and that

$$
F^{\prime}=G
$$

Hint. Note that

$$
\begin{aligned}
\frac{F(x)-F(a)}{x-a}-G(a)= & {\left[\frac{f_{n}(x)-f_{n}(a)}{x-a}-f_{n}^{\prime}(a)\right] } \\
+ & {\left[\frac{\left(F-f_{n}\right)(x)-\left(F-f_{n}\right)(a)}{x-a}\right]+\left[f_{n}^{\prime}(a)-G(a)\right] }
\end{aligned}
$$

and that

$$
\frac{\left(F-f_{n}\right)(x)-\left(F-f_{n}\right)(a)}{x-a}=\lim _{m \rightarrow \infty} \frac{\left(f_{m}-f_{n}\right)(x)-\left(f_{m}-f_{n}\right)(a)}{x-a}
$$

whenever $x, a \in I, x \neq a$ and $n \in \mathbb{N}$. Show that the second and third terms can be made small by making n large independently of a and x; to deal with the second term make use of the Mean Value Theorem.

Bonus question; not really too hard. Show that instead of supposing f converges to F uniformly it suffices to assume that, for some $a \in I, f_{n}(a) \rightarrow F(a)$ as $n \rightarrow \infty$.

