Homework Seven. Due Friday, October 16

1. The Hausdorff distance.

Suppose (X, ρ) is a metric space.
Exercise 1.1. Suppose $A \subset X$ and let

$$
\rho(x, A)=\inf \{\rho(x, a): a \in A\}
$$

Show that

$$
|\rho(x, A)-\rho(y, A)| \leq \rho(x, y) \quad \text { whenever } x, y \in X
$$

Hint: Check the hints in the notes on metric spaces.
Exercise 1.2. (This is challenging.) Let $\mathcal{B}(X)$ be the family of closed subsets of X with finite diameter. Let

$$
\rho(A, B)=\max \{\sup \{\rho(b, A): b \in B\}, \sup \{\rho(a, B): a \in A\}\}
$$

(Note that poor little ρ is being used in three different ways here!). Show that $\mathcal{B}(X) \times \mathcal{B}(X) \ni(A, B) \mapsto \rho(A, B) \in[0, \infty)$ is a metric on $\mathcal{B}(X)$.

Extra credit: Show that $\mathcal{B}(X)$ is compact if X is compact.

2. Oscillation.

Suppose X is a topological space, Y is a metric space and $f: X \rightarrow Y$. We define

$$
\operatorname{osc} f: X \rightarrow[0, \infty]
$$

the oscillation of f by setting

$$
\operatorname{osc} f(a)=\inf \{\operatorname{diam} f[U]: a \in U \subset X \text { and } U \text { is open }\} \quad \text { for } a \in X
$$

Show that
(i) if $a \in X$ then f is continuous at a if and only if osc $f(a)=0$;
(ii) the set $\{x \in X: \operatorname{osc} f(x) \geq c\}$ is closed for any $c \in[0, \infty]$.

3. Rearranging sums.

Suppose X and Y are sets, $\sigma: X \rightarrow Y, \sigma$ is univalent and $\mathbf{r n g} \sigma=Y$. In both of the Exercises which follow you should make use of the stuff on Summation that has an ϵ in it.

Exercise 3.1. Suppose $p: Y \rightarrow[0, \infty]$. Show that

$$
\sum_{\sigma[A]} p=\sum_{A} p \circ \sigma \quad \text { whenever } A \subset X
$$

Exercise 3.2. Suppose V is a Banach space, $f: Y \rightarrow V, A \subset X$ and $f \circ \sigma$ is summable over A. Show that f is summable over $\sigma[A]$ and that

$$
\sum_{\sigma[A]} f=\sum_{A} f \circ \sigma
$$

4. The Fundamental Theorem of Algebra

Suppose d is a positive integer and p is a nonconstant complex polynomial function of degree d. This means, by definition, that there are complex numbers $c_{0}, c_{1}, \ldots, c_{d}$ such that $c_{d} \neq 0$ and

$$
p(z)=\sum_{j=0}^{d} c_{j} z^{j} \quad \text { whenever } \quad z \in \mathbb{C}
$$

Show that there is $a \in \mathbb{C}$ such that $p(a)=0$.
I suggest you proceed as follows.
Formulate precisely and prove that

$$
\begin{equation*}
\lim _{|z| \leftarrow \infty}|p(z)|=\infty \tag{1}
\end{equation*}
$$

Next, set

$$
m=\inf \{|p(z)|: z \in \mathbb{C}\}
$$

and show that there exists

$$
a \in \mathbb{C} \quad \text { such that } \quad|p(a)|=m
$$

Do this by using (1) to obtain $R \in(0, \infty)$ such that $|p(z)| \geq m$ whenever $|z| \geq R$ and then minimizing $|p|$ on $\{z \in \mathbb{C}:|z| \leq R\}$.

Finish things off by showing that $m=0$ so that $p(a)=0$. Do this by showing that if $|p(a)|>0$ then there are $s>0$ and $t \in \mathbb{R}$ such that $\left|p\left(a+s e^{i t}\right)\right|<|p(a)|$. For this purpose it will help to write $p(z)=p(a)+q(z)(z-a)^{l}$ where l is a positive integer and where q is a polynomial function such $q(a) \neq 0$. Then write $q(z)=$ $q(a)+r(z)(z-a)^{m}$ where r is a polynomial function such $r(a) \neq 0$. One then has

$$
p(z)=p(a)+\left(q(a)+(z-a)^{m} r(z)\right)(z-a)^{l}
$$

Now let $z=a+s e^{i t}$ where $0<s<\infty$ and $t \in \mathbb{R}$ to obtain

$$
p(z)=p(a)+\left(q(a)+s^{m} e^{i m t} r\left(a+s e^{i t}\right)\right) s^{l} e^{i l t}
$$

Finally, choose t such that $q(a) e^{i l t}=-w p(a)$ for some positive real number w; here we are using the fact that the range of the complex exponential function is $\mathbb{C} \sim\{0\}$. Letting $s \downarrow 0$ one obtains a contradiction.

