
Homework Seven. Due Friday, October 16

1. The Hausdorff distance.

Suppose (X, ρ) is a metric space.

Exercise 1.1. Suppose A ⊂ X and let

ρ(x,A) = inf{ρ(x, a) : a ∈ A}.
Show that

|ρ(x,A)− ρ(y, A)| ≤ ρ(x, y) whenever x, y ∈ X.

Hint: Check the hints in the notes on metric spaces.

Exercise 1.2. (This is challenging.) Let B(X) be the family of closed subsets of
X with finite diameter. Let

ρ(A,B) = max{sup{ρ(b, A) : b ∈ B}, sup{ρ(a, B) : a ∈ A}}.
(Note that poor little ρ is being used in three different ways here!). Show that
B(X)× B(X) 3 (A,B) 7→ ρ(A,B) ∈ [0,∞) is a metric on B(X).

Extra credit: Show that B(X) is compact if X is compact.

2. Oscillation.

Suppose X is a topological space, Y is a metric space and f : X → Y . We define

osc f : X → [0,∞],

the oscillation of f by setting

osc f(a) = inf{diam f [U ] : a ∈ U ⊂ X and U is open} for a ∈ X.

Show that

(i) if a ∈ X then f is continuous at a if and only if osc f(a) = 0;
(ii) the set {x ∈ X : osc f(x) ≥ c} is closed for any c ∈ [0,∞].

3. Rearranging sums.

Suppose X and Y are sets, σ : X → Y , σ is univalent and rng σ = Y . In both
of the Exercises which follow you should make use of the stuff on Summation that
has an ε in it.

Exercise 3.1. Suppose p : Y → [0,∞]. Show that
∑

σ[A]

p =
∑

A

p ◦ σ whenever A ⊂ X.

Exercise 3.2. Suppose V is a Banach space, f : Y → V , A ⊂ X and f ◦ σ is
summable over A. Show that f is summable over σ[A] and that

∑

σ[A]

f =
∑

A

f ◦ σ.
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4. The Fundamental Theorem of Algebra

Suppose d is a positive integer and p is a nonconstant complex polynomial
function of degree d. This means, by definition, that there are complex numbers
c0, c1, . . . , cd such that cd 6= 0 and

p(z) =
d∑

j=0

cjz
j whenever z ∈ C.

Show that there is a ∈ C such that p(a) = 0.
I suggest you proceed as follows.
Formulate precisely and prove that

(1) lim
|z|←∞

|p(z)| = ∞.

Next, set
m = inf{|p(z)| : z ∈ C}

and show that there exists

a ∈ C such that |p(a)| = m.

Do this by using (1) to obtain R ∈ (0,∞) such that |p(z)| ≥ m whenever |z| ≥ R
and then minimizing |p| on {z ∈ C : |z| ≤ R}.

Finish things off by showing that m = 0 so that p(a) = 0. Do this by showing
that if |p(a)| > 0 then there are s > 0 and t ∈ R such that |p(a + seit)| < |p(a)|.
For this purpose it will help to write p(z) = p(a)+ q(z)(z−a)l where l is a positive
integer and where q is a polynomial function such q(a) 6= 0. Then write q(z) =
q(a) + r(z)(z − a)m where r is a polynomial function such r(a) 6= 0. One then has

p(z) = p(a) + (q(a) + (z − a)mr(z))(z − a)l.

Now let z = a + seit where 0 < s < ∞ and t ∈ R to obtain

p(z) = p(a) + (q(a) + smeimtr(a + seit))sleilt.

Finally, choose t such that q(a)eilt = −wp(a) for some positive real number w; here
we are using the fact that the range of the complex exponential function is C ∼ {0}.
Letting s ↓ 0 one obtains a contradiction.


