1. The topology of \mathbb{R}

Exercise 1.1. Prove using nothing but the definition that $(0,1) \times[0,1]$ is not a compact subset of \mathbb{R}^{2}.

Exercise 1.2. Prove using nothing but the definition that $\{0,1\} \times \mathbb{R}$ is not connected a connected subset of \mathbb{R}^{2}.

Exercise 1.3. Prove that

$$
\operatorname{cl} \mathbf{Q}=\mathbb{R}, \quad \operatorname{cl}(\mathbb{R} \sim \mathbf{Q})=\mathbb{R}, \quad \operatorname{int} \mathbf{Q}=\emptyset, \quad \operatorname{int}(\mathbb{R} \sim \mathbf{Q})=\emptyset
$$

Hint: You will need to use that fact that if $a, b \in \mathbb{R}$ and $a<b$ then there is $q \in \mathbb{Q}$ such that $a<q<b$. Also, if you don't use the Theorems in the notes efficiently you will need to work much harder.

Exercise 1.4. Suppose $x \in \mathbb{R} \sim \mathbf{Q}$ and let

$$
A=\{m+n x: m, n \in \mathbf{Z}\}
$$

Prove that $\mathbf{c l} A=\mathbb{R}$. (This is very tricky.) Big hint: It will suffice to show that for each $\epsilon>0$ there is $a \in A$ such that $0<a<\epsilon$.

2. The topology of \mathbb{R}^{n}.

Do Exercise 1.1 from Topological spaces.

3. Normed linear spaces.

Suppose X is a vector space. We say a function

$$
|\cdot|: X \rightarrow[0, \infty)
$$

is a norm (on X) if
(i) $|c x|=|c||x|$ whenever $c \in \mathbb{R}$ and $x \in X$;
(ii) $|x+y| \leq|x|+|y|$ whenever $x, y \in X$;
(iii) if $x \in X$ and $|x|=0$ then $x=0$.

Exercise 3.1. Suppose $|\cdot|$ is a norm on X. Declare a subset U of X to be open if for each $a \in U$ there is $\epsilon>0$ such that

$$
\{x \in X:|x-a|<\epsilon\} \subset U
$$

Show that the open subsets of X are a topology on X which is Hausdorff. (Note that $|x \pm y| \geq|x|-|y|$ whenever $x, y \in X$. What you did to do Exercise 1.1 above should carry over directly to the present situation.)

Exercise 3.2. Prove that the closure of a linear subspace of a normed vector space is a linear subspace.

Definition 3.1. A subset C of a vector space is convex if

$$
a, b \in C \Rightarrow\{(1-t) a+t b: 0<t<1\} \subset C
$$

Exercise 3.3. Prove that the interior and closure of a convex subset of a normed vector space are convex.

4. Product topologies.

Suppose A is a nonempty set and X is a function with domain A such that X_{a} is a nonempty topological space for each $a \in A$.
Let

$$
\prod_{a \in A} X_{a} \quad \text { or }, \text { more compactly, } \quad \prod X
$$

be the set of functions x with domain A such that

$$
x_{a} \in X_{a} \quad \text { whenever } a \in A
$$

(It follows from the Axiom of Choice that $\prod_{a \in A} X_{a}$ is nonempty.) Think of a member of ΠX as an A-tuple whose a-th component is a member of X_{a} for each $a \in A$. For each $a \in A$ let

$$
p_{a}: \prod X \rightarrow X_{a}
$$

be such that

$$
p_{a}(x)=x_{a} \quad \text { whenever } x \in \prod X
$$

Let

\mathcal{B}

be the family of subsets V of $\prod X$ such that there are a finite subset F of A and for each $a \in F$ an open subset U_{a} of X_{a} such that

$$
V=\bigcap_{a \in F} p_{a}^{-1}\left[U_{a}\right] .
$$

Exercise 4.1. Show that

$$
\mathcal{T}=\{\cup \mathcal{A}: \mathcal{A} \subset \mathcal{B}\}
$$

is a topology for ΠX. In fact, it should be obvious that \mathcal{T} is closed with respect to unions so it will suffice to show that \mathcal{B} is closed with respect to finite intersections. (Not surprisingly, this topology is called the product topology.)

