2. An introduction to convex functions.

1. Suppose $I \subset \mathbb{R}$ and

$$
f: I \rightarrow \mathbb{R}
$$

We say f is convex if I is an interval and
$f((1-\lambda) a+\lambda b) \leq(1-\lambda) f(a)+\lambda f(b) \quad$ whenever $a, b \in I$ and $0 \leq \lambda \leq 1$.
Prove the following.
(i) f is convex if and only if

$$
\{(x, y) \in I \times \mathbb{R}: f(x) \leq y\} \text { is convex. }
$$

(ii) f is convex if and only if for each $a \in I$ there is $m \in \mathbb{R}$ such that

$$
f(a)+m(x-a) \leq f(x) \quad \text { whenever } x \in I
$$

(iii) f is convex if and only if

$$
\frac{f(b)-f(a)}{b-a} \leq \frac{f(d)-f(c)}{d-c}
$$

whenever $a, b, c, d \in I, a<b, c<d, a \leq c \leq b \leq d$;
(iv) if $a, b \in I$ and $a<b$ there is $M \in[0, \infty)$ such that

$$
|f(x)-f(y)| \leq M|x-y| \quad \text { whenever } a<x \leq y<b
$$

(v) if f is continuous and twice differentiable in the interior of I then f is convex if and only if $f^{\prime \prime}$ is nonnegative.
2. Suppose C is a compact convex subset of $\mathbb{R}^{2}, I=\{x:(x, y) \in C$ for some $y\}$ and $f_{ \pm}: I \rightarrow \mathbb{R}$ are such that

$$
f_{+}(x)=\sup \{y:(x, y) \in C\} \quad \text { and } \quad f_{-}(x)=\inf \{y:(x, y) \in C\}
$$

Show that I is an interval, f_{-}is convex, f^{+}is concave and

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: x \in I \text { and } f_{(}(x) \leq y \leq f_{+}(x)\right\}
$$

2.1. The inequalities of Hölder and Minkowski; Convolution. Prove Proposition 1.1, Theorem 1.1, Theorem 1.2, Theorem 1.3 from Hölder's Inequality and and Minkowski's Inequality.

Prove Proposition 2.1, Proposition 2.2, and Proposition 2.3 from Convolution and other stuff.

