1. Homework Ten. Due Monday, November 23

2. An introduction to convex functions.

1. Suppose $I \subset \mathbb{R}$ and

$$f: I \to \mathbb{R}.$$

We say f is **convex** if I is an interval and

$$f((1-\lambda)a + \lambda b) \le (1-\lambda)f(a) + \lambda f(b) \quad \text{whenever } a, b \in I \text{ and } 0 \le \lambda \le 1.$$

Prove the following.

(i) f is convex if and only if

 $\{(x,y) \in I \times \mathbb{R} : f(x) \le y\}$ is convex.

(ii) f is convex if and only if for each $a \in I$ there is $m \in \mathbb{R}$ such that

$$f(a) + m(x - a) \le f(x)$$
 whenever $x \in I$.

(iii) f is convex if and only if

$$\frac{f(b) - f(a)}{b - a} \le \frac{f(d) - f(c)}{d - c}$$

- whenever $a, b, c, d \in I$, $a < b, c < d, a \le c \le b \le d$;
- (iv) if $a, b \in I$ and a < b there is $M \in [0, \infty)$ such that

 $|f(x) - f(y)| \le M|x - y|$ whenever $a < x \le y < b$.

(v) if f is continuous and twice differentiable in the interior of I then f is convex if and only if f'' is nonnegative.

2. Suppose C is a compact convex subset of \mathbb{R}^2 , $I = \{x : (x, y) \in C \text{ for some } y\}$ and $f_{\pm} : I \to \mathbb{R}$ are such that

 $f_+(x) = \sup\{y : (x, y) \in C\}$ and $f_-(x) = \inf\{y : (x, y) \in C\}.$

Show that I is an interval, f_{-} is convex, f^{+} is concave and

$$C = \{(x, y) \in \mathbb{R}^2 : x \in I \text{ and } f(x) \le y \le f_+(x)\}.$$

2.1. The inequalities of Hölder and Minkowski; Convolution. Prove Proposition 1.1, Theorem 1.1, Theorem 1.2, Theorem 1.3 from Hölder's Inequality and and Minkowski's Inequality.

Prove Proposition 2.1, Proposition 2.2, and Proposition 2.3 from Convolution and other stuff.