Inner products.

Let V be a vector space.
Definition 0.1. We say a function

$$
\beta: V \times V \rightarrow \mathbb{R}
$$

is an inner product on V if
(i) for each $v \in V$ the function

$$
V \ni w \mapsto \beta(v, w) \in \mathbb{R}
$$

is linear;
(ii) for each $w \in V$ the function

$$
V \ni v \mapsto \beta(v, w) \in \mathbb{R}
$$

is linear;
(iii) $\beta(v, w)=\beta(w, v)$ for each $v, w \in V$ and
(iv) $\beta(v, v) \geq 0$ with equality only if $v=0$.

Here's some fancy mathematics terminology that goes with this. Properties (i) and (ii) say that i is bilinear, property (iii) says that i is symmetric and property (iv) says that i is positive definite.

One often writes

$$
v \bullet w
$$

for $\beta(v, w)$. Keeping in mind (iv), for $v \in V$ we set

$$
|v|=\sqrt{v \bullet v}
$$

and call this nonegative real number the norm or length of v.
We have the all important
Theorem 0.1 (Cauchy-Schwarz inequality.). For any $v, w \in V$ we have

$$
|v \bullet w| \leq|v||w|,
$$

with equality only if the set $\{v, w\}$ is dependent.
Proof. We shall assume the $w \neq 0$ since otherwise the assertion holds trivially. For any $t \in \mathbb{R}$ we have

$$
\begin{aligned}
0 & \leq|v+t w|^{2} \\
& =(v+t w) \bullet(v+t w) \\
& =v \bullet v+v \bullet(t w)+(t w) \bullet v+(t w) \bullet(t w) \\
& =v \bullet v+t v \bullet w+t w \bullet v+t^{2} w \bullet w \\
& =|v|^{2}+2 t v \bullet w+t^{2}|w|^{2} .
\end{aligned}
$$

Setting

$$
t=-\frac{v \bullet w}{|w|^{2}}
$$

and doing a little bit of manipulation we infer the desired inequality. If $|v \bullet w|=$ $|v||w|$ we find that $|v+t w|=0$ so that $\{v, w\}$ is indeed dependent.

Theorem 0.2 (The triangle inequality.). For any $v, w \in V$ we have that

$$
|v+w| \leq|v|+|w|
$$

with equality only if $\{v, w\}$ is dependent.
Proof. Square both sides and use the Cauchy-Schwartz inequality.

Theorem 0.3 (The Parallelogram Law.). Suppose $v, w \in V$. Then

$$
|v+w|^{2}+|v-w|^{2}=2\left(|v|^{2}+|w|^{2}\right)
$$

Proof. Turn the crank.
Things to do.
i) Justify the use of term length above.
ii) We say v is perpendicular to w and write

$$
v \perp w
$$

if

$$
v \bullet w=0 .
$$

Justify the use of this terminology.
iii) Suppose f and g are continuous real value functions on the interval $[a, b]$. Show that

$$
\left|\int_{a}^{b} f(x) g(x) d x\right| \leq\left(\int_{a}^{b} f(x)^{2} d x\right)^{\frac{1}{2}}\left(\int_{a}^{b} g(x)^{2} d x\right)^{\frac{1}{2}}
$$

Hilbert space

Let A be a set.

We let

$$
\mathbf{H}_{A}=\left\{x \in \mathbb{R}^{A}: \sum_{\alpha \in A} x_{\alpha}^{2}<\infty\right\} .
$$

Suppose $x, y \in \mathbf{H}_{A}$ and F is a finite subset of A. By the Cauchy-Schwarz inequality in \mathbb{R}^{F} we have

$$
\left(\sum_{\alpha \in F}\left|x_{\alpha} y_{\alpha}\right|\right)^{2} \leq\left(\sum_{\alpha \in F} x_{\alpha}^{2}\right)\left(\sum_{\alpha \in F} y_{\alpha}^{2}\right) \leq\left(\sum_{\alpha \in \alpha} x_{\alpha}^{2}\right)\left(\sum_{\alpha \in A} y_{\alpha}^{2}\right)<\infty
$$

Thus we may define

$$
x \bullet y=\sum_{\alpha \in A} x_{\alpha} y_{\alpha}
$$

and thereby make \mathbf{H}_{A} into an inner product space. We have

$$
|x|^{2}=\sum_{\alpha \in A} x_{\alpha}^{2} \text { for } x \in \mathbf{H}_{A}
$$

For each $\alpha \in A$ we define $\mathbf{e}_{\alpha} \in \mathbf{H}_{A}$ by setting

$$
\left(\mathbf{e}_{\alpha}\right)_{\beta}= \begin{cases}1 & \text { if } \alpha=\beta \\ 0 & \text { else }\end{cases}
$$

we note the $\left|\mathbf{e}_{\alpha}\right|=1$ and we define the linear map

$$
\mathbf{e}^{\alpha}: \mathbf{H}_{A} \rightarrow \mathbb{R}
$$

by setting $\mathbf{e}^{\alpha}(x)=x_{\alpha}$. Evidently,

$$
\left|\mathbf{e}^{\alpha}(x)\right| \leq|x|, \quad x \in \mathbf{H}_{A}
$$

For each subset B of A we define the linear map

$$
P_{B}: \mathbf{H}_{A} \rightarrow \mathbf{H}_{A}
$$

by setting

$$
P_{B}(x)_{\alpha}= \begin{cases}x_{\alpha} & \text { if } \alpha \in B \\ 0 & \text { else }\end{cases}
$$

for $x \in \mathbf{H}_{A}$. We have
$\left|P_{B \cup C}(x)\right|^{2}+\left|P_{B \cap C}(x)\right|^{2}=\left|P_{B}(x)\right|^{2}+\left|P_{C}(x)\right|^{2} \quad$ whenever $B, C \subset A$ and $x \in \mathbf{H}_{A}$.

Theorem 0.4. \mathbf{H}_{A} is complete.
Proof. Suppose \mathcal{C} is a nonempty family of nonempty closed subsets of \mathbf{H}_{A} such that

$$
\begin{equation*}
\inf \{\operatorname{diam} C: C \in \mathcal{C}\}=0 \tag{1}
\end{equation*}
$$

For each $\alpha \in A$ let $\mathcal{C}_{\alpha}=\left\{\mathbf{c l} \mathbf{e}^{\alpha}[C]: C \in \mathcal{C}\right.$. Inasmuch as

$$
\operatorname{diam} \operatorname{cl}^{\alpha}[C] \leq \operatorname{diam} C \text { whenever } C \in \mathcal{C}
$$

we infer that \mathcal{C}_{α} is a nonempty family of nonempty closed subsets of \mathbb{R} such $\inf \left\{\operatorname{diam} C: C \in \mathcal{C}_{\alpha}\right\}=0$ whenever $\alpha \in A$. Owing to the completeness of \mathbb{R} we may define $x \in \mathbb{R}^{A}$ by requiring that

$$
x_{\alpha} \in \bigcap\left\{\mathbf{c l}^{\alpha}[C]: C \in \mathcal{C}\right\}, \alpha \in A
$$

Note that

$$
\begin{equation*}
\left|x_{\alpha}-y_{\alpha}\right| \leq \operatorname{diam} C \text { whenever } y \in C \in \mathcal{C} \tag{2}
\end{equation*}
$$

To prove the Theorem we will show that

$$
\begin{equation*}
x \in \cap \mathcal{C} . \tag{3}
\end{equation*}
$$

Lemma 0.1. $x \in \underline{H}_{A}$.
Proof. Suppose F is a finite subset of A. Using the Cauchy-Schwartz Inequality in $\underline{\mathrm{R}}^{F}$ we find that, for any $y \in C \in \mathcal{C}$,

$$
|x| F|\leq|(x-y)| F|+|y| F\left|=\sqrt{\sum_{\alpha \in F}\left(x_{\alpha}-y_{\alpha}\right)^{2}}+\left|P_{F}(y)\right| \leq \sqrt{|F|} \operatorname{diam} C+|y|\right.
$$

That $x \in \underline{\mathrm{H}}_{A}$ now follows from (1).

Lemma 0.2. Suppose $C \in \mathcal{C}$ and $\epsilon>0$. There exists a finite subset G of A such that

$$
\left|P_{A \sim G}(y)\right| \leq \operatorname{diam} C+\epsilon \quad \text { for } y \in C
$$

Proof. Let $z \in C$. Let G be a finite subset of A such that $\left|P_{A \sim G}(z)\right|<\epsilon$. For any $y \in C$ we have

$$
\left|P_{A \sim G}(y)\right| \leq\left|P_{A \sim G}(y-z)\right|+\left|P_{A \sim G}(z)\right| \leq|y-z|+\left|P_{A \sim G}(z)\right| \leq \operatorname{diam} C+\epsilon
$$

Suppose $C \in \mathcal{C}$ and $\epsilon>0$. (3) will follow if we can show that

$$
\begin{equation*}
\mathrm{B}_{x}(\epsilon) \cap C \neq \emptyset . \tag{4}
\end{equation*}
$$

Using Lemma Two and (1) choose a finite subset G of A and $D \in \mathcal{C}$ such that $D \subset C$ and $\left|P_{A \sim G}(y)\right| \leq \epsilon / 3$ whenever $y \in D$. Next use Lemma One to choose a finite subset F of A such that $G \subset F$ and $\left|P_{A \sim F}(x)\right| \leq \epsilon / 3$. Finally use (1) to choose $E \in \mathcal{C}$ such that $E \subset D$ and $\sqrt{|F|} \operatorname{diam} E \leq \epsilon / 3$. Let $y \in D$. Then by (2)
$|x-y| \leq\left|P_{F}(x-y)\right|+\left|P_{A \sim F}(x)\right|+\left|P_{A \sim F}(y)\right| \leq \sqrt{F} \operatorname{diam} E+\left|P_{A \sim F}(x)\right|+\left|P_{A \sim G}(y)\right| \leq \epsilon$ so $y \in \mathbf{B}_{x}(\epsilon)$ and (4) holds.
???
Proof. Let

$$
\mathbf{B}_{A}=\left\{x \in \mathbf{H}_{A}:|x| \leq 1\right\} .
$$

Then \mathbf{B}_{A} is closed and bounded. It is not totally bounded if A is infinite. That is because

$$
\left|\mathbf{e}_{\alpha}-\mathbf{e}_{\beta}\right|=\sqrt{2} \text { whenever } \alpha, \beta \in A \text { and } \alpha \neq \beta
$$

so that if $0<r<\sqrt{2}$ then no two of the \mathbf{e}_{α} 's can belong to any closed ball of radius r and so \mathbf{H}_{A} is not contained in the union of a finite number of closed balls of radius r.

Discarding members of \mathcal{C} whose diameter exceeds a given positive real number if necessary, we see we may assume without loss of generality that there is a positive real number R such that $\operatorname{diam} C \leq R$ whenever $C \in \mathcal{C}$. Whenever F is a finite subset of A and $y \in C \in \mathcal{C}$ we may use the Cauchy-Schwartz inequality in \mathbb{R}^{F} to infer that

$$
\sqrt{\sum_{\alpha \in F} x_{\alpha}^{2}} \leq \sqrt{\sum_{\alpha \in F}\left(x_{\alpha}-y_{\alpha}\right)^{2}}+\sqrt{\sum_{\alpha \in F} y_{\alpha}^{2}} \leq \sqrt{|F|} \operatorname{diam} C+R
$$

Since we the diameter of C here can be made arbitrarily small, we find that $x \in \mathbf{H}_{A}$ and $|x| \leq R$.

Suppose $\epsilon>0$. We will show that

$$
\begin{equation*}
\mathbf{B}_{x}(\epsilon) \cap C \neq \emptyset \text { for any } C \in \mathcal{C} \tag{1}
\end{equation*}
$$

and that will complete the proof. Choose $C_{0} \in \mathcal{C}$ such that $\operatorname{diam} C \leq \epsilon / 4$. Choose $y \in C_{0}$. Choose a finite subset F of A such that

$$
\left|P_{X \sim F}(x)\right| \leq \epsilon / 4 \text { and }\left|P_{X \sim F}(y)\right| \leq \epsilon / 4
$$

Whenever $z \in C \in \mathcal{C}$ and $C \subset C_{0}$ we have

$$
x-z=P_{F}(x-z)+P_{A \sim F}(x)+P_{A \sim F}(y-z)-P_{A \sim F}(y) .
$$

Using the Triangle Inequality we infer that

$$
\begin{aligned}
|x-z| & \leq\left|P_{F}(x-z)\right|+\left|P_{A \sim F}(x)\right|+\left|P_{A \sim F}(y-z)\right|+\left|P_{A \sim F}(y)\right| \\
& \leq|F| \operatorname{diam} C+\epsilon / 4+\operatorname{diam} C_{1}+\epsilon / 4 \\
& \leq|F| \operatorname{diam} C+3 \epsilon / 4 \\
& \leq \epsilon
\end{aligned}
$$

provided $|F| \operatorname{diam} C \leq \epsilon / 4$. Thus (1) holds since \mathcal{C} is nested.

