
Inner products.

Let V be a vector space.

Definition 0.1. We say a function

β : V × V → R

is an inner product on V if

(i) for each v ∈ V the function

V ∋ w 7→ β(v, w) ∈ R

is linear;

(ii) for each w ∈ V the function

V ∋ v 7→ β(v, w) ∈ R

is linear;

(iii) β(v, w) = β(w, v) for each v, w ∈ V and

(iv) β(v, v) ≥ 0 with equality only if v = 0.

Here’s some fancy mathematics terminology that goes with this. Properties (i)
and (ii) say that i is bilinear, property (iii) says that i is symmetric and property
(iv) says that i is positive definite.

One often writes

v • w
for β(v, w). Keeping in mind (iv), for v ∈ V we set

|v| =
√
v • v

and call this nonegative real number the norm or length of v.

We have the all important

Theorem 0.1 (Cauchy-Schwarz inequality.). For any v, w ∈ V we have

|v • w| ≤ |v| |w|,

with equality only if the set {v, w} is dependent.

Proof. We shall assume the w ̸= 0 since otherwise the assertion holds trivially. For
any t ∈ R we have

0 ≤ |v + t w|2

= (v + t w) • (v + t w)

= v • v + v • (tw) + (tw) • v + (tw) • (tw)
= v • v + t v • w + t w • v + t2 w • w
= |v|2 + 2 t v • w + t2 |w|2.
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Setting

t = −v • w
|w|2

and doing a little bit of manipulation we infer the desired inequality. If |v • w| =
|v||w| we find that |v + tw| = 0 so that {v, w} is indeed dependent. □

Theorem 0.2 (The triangle inequality.). For any v, w ∈ V we have that

|v + w| ≤ |v| + |w|,
with equality only if {v, w} is dependent.

Proof. Square both sides and use the Cauchy-Schwartz inequality. □

Theorem 0.3 (The Parallelogram Law.). Suppose v, w ∈ V . Then

|v + w|2 + |v − w|2 = 2(|v|2 + |w|2).

Proof. Turn the crank. □
Things to do.

i) Justify the use of term length above.

ii) We say v is perpendicular to w and write

v ⊥ w

if
v • w = 0.

Justify the use of this terminology.

iii) Suppose f and g are continuous real value functions on the interval [a, b].
Show that

|
∫ b

a

f(x)g(x) dx| ≤ (

∫ b

a

f(x)2 dx)
1
2 (

∫ b

a

g(x)2 dx)
1
2 .

Hilbert space

Let A be a set.

We let
HA = {x ∈ RA :

∑
α∈A

x2
α < ∞}.

Suppose x, y ∈ HA and F is a finite subset of A. By the Cauchy-Schwarz inequality
in RF we have( ∑

α∈F

|xαyα|
)2 ≤

( ∑
α∈F

x2
α

)( ∑
α∈F

y2α
)
≤

(∑
α∈α

x2
α

)( ∑
α∈A

y2α
)
< ∞.

Thus we may define

x • y =
∑
α∈A

xαyα

and thereby make HA into an inner product space. We have

|x|2 =
∑
α∈A

x2
α for x ∈ HA.



3

For each α ∈ A we define eα ∈ HA by setting

(eα)β =

{
1 if α = β,

0 else,

we note the |eα| = 1 and we define the linear map

eα : HA → R

by setting eα(x) = xα. Evidently,

|eα(x)| ≤ |x|, x ∈ HA.

For each subset B of A we define the linear map

PB : HA → HA

by setting

PB(x)α =

{
xα if α ∈ B,

0 else

for x ∈ HA. We have

|PB∪C(x)|2 + |PB∩C(x)|2 = |PB(x)|2 + |PC(x)|2 whenever B,C ⊂ A and x ∈ HA.

Theorem 0.4. HA is complete.

Proof. Suppose C is a nonempty family of nonempty closed subsets of HA such that

(1) inf{diamC : C ∈ C} = 0.

For each α ∈ A let Cα = {cl eα[C] : C ∈ C. Inasmuch as

diamcl eα[C] ≤ diamC whenever C ∈ C

we infer that Cα is a nonempty family of nonempty closed subsets of R such
inf{diamC : C ∈ Cα} = 0 whenever α ∈ A. Owing to the completeness of R
we may define x ∈ RA by requiring that

xα ∈
∩

{cl eα[C] : C ∈ C}, α ∈ A.

Note that

(2) |xα − yα| ≤ diamC whenever y ∈ C ∈ C.

To prove the Theorem we will show that

(3) x ∈ ∩C.

Lemma 0.1. x ∈ H
¯A.

Proof. Suppose F is a finite subset of A. Using the Cauchy-Schwartz Inequality in
R
¯
F we find that, for any y ∈ C ∈ C,

|x|F | ≤ |(x− y)|F |+ |y|F | =
√∑

α∈F

(xα − yα)2 + |PF (y)| ≤
√
|F |diamC + |y|.

That x ∈ H
¯A now follows from (1). □
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Lemma 0.2. Suppose C ∈ C and ϵ > 0. There exists a finite subset G of A such
that

|PA∼G(y)| ≤ diamC + ϵ for y ∈ C.

Proof. Let z ∈ C. Let G be a finite subset of A such that |PA∼G(z)| < ϵ. For any
y ∈ C we have

|PA∼G(y)| ≤ |PA∼G(y − z)|+ |PA∼G(z)| ≤ |y − z|+ |PA∼G(z)| ≤ diamC + ϵ

□

Suppose C ∈ C and ϵ > 0. (3) will follow if we can show that

(4) B
¯x(ϵ) ∩ C ̸= ∅.

Using Lemma Two and (1) choose a finite subset G of A and D ∈ C such that
D ⊂ C and |PA∼G(y)| ≤ ϵ/3 whenever y ∈ D. Next use Lemma One to choose
a finite subset F of A such that G ⊂ F and |PA∼F (x)| ≤ ϵ/3. Finally use (1) to

choose E ∈ C such that E ⊂ D and
√
|F |diamE ≤ ϵ/3. Let y ∈ D. Then by (2)

|x−y| ≤ |PF (x−y)|+|PA∼F (x)|+|PA∼F (y)| ≤
√
FdiamE+|PA∼F (x)|+|PA∼G(y)| ≤ ϵ

so y ∈ B x(ϵ) and (4) holds. □

??????????????????????????????????????????????????????????????????????

Proof. Let
BA = {x ∈ HA : |x| ≤ 1}.

Then BA is closed and bounded. It is not totally bounded if A is infinite. That is
because

|eα − eβ | =
√
2 whenever α, β ∈ A and α ̸= β

so that if 0 < r <
√
2 then no two of the eα’s can belong to any closed ball of

radius r and so HA is not contained in the union of a finite number of closed balls
of radius r.

Discarding members of C whose diameter exceeds a given positive real number if
necessary, we see we may assume without loss of generality that there is a positive
real number R such that diamC ≤ R whenever C ∈ C. Whenever F is a finite
subset of A and y ∈ C ∈ C we may use the Cauchy-Schwartz inequality in RF to
infer that √∑

α∈F

x2
α ≤

√∑
α∈F

(xα − yα)2 +

√∑
α∈F

y2α ≤
√
|F |diamC +R.

Since we the diameter of C here can be made arbitrarily small, we find that x ∈ HA

and |x| ≤ R.
Suppose ϵ > 0. We will show that

(1) Bx(ϵ) ∩ C ̸= ∅ for any C ∈ C
and that will complete the proof. Choose C0 ∈ C such that diamC ≤ ϵ/4. Choose
y ∈ C0. Choose a finite subset F of A such that

|PX∼F (x)| ≤ ϵ/4 and |PX∼F (y)| ≤ ϵ/4.

Whenever z ∈ C ∈ C and C ⊂ C0 we have

x− z = PF (x− z) + PA∼F (x) + PA∼F (y − z)− PA∼F (y).



5

Using the Triangle Inequality we infer that

|x− z| ≤ |PF (x− z)|+ |PA∼F (x)|+ |PA∼F (y − z)|+ |PA∼F (y)|
≤ |F |diamC + ϵ/4 + diamC1 + ϵ/4

≤ |F |diamC + 3ϵ/4

≤ ϵ

provided |F |diamC ≤ ϵ/4. Thus (1) holds since C is nested. □


