Inner products.
Let V be a vector space.

Definition 0.1. We say a function
B:VxV >R

is an inner product on V if

(i) for each v € V the function
Vowr glu,w) eR
is linear;
(ii) for each w € V' the function
Vove fv,w) eR

is linear;
(iil) B(v,w) = B(w,v) for each v,w € V and

(iv) B(v,v) > 0 with equality only if v = 0.

Here’s some fancy mathematics terminology that goes with this. Properties (i)
and (ii) say that 4 is bilinear, property (iii) says that ¢ is symmetric and property
(iv) says that i is positive definite.

One often writes
vew
for S(v,w). Keeping in mind (iv), for v € V we set
[v] = Vvew

and call this nonegative real number the norm or length of v.

We have the all important
Theorem 0.1 (Cauchy-Schwarz inequality.). For any v,w € V we have
[vew| < o] [w],
with equality only if the set {v,w} is dependent.

Proof. We shall assume the w # 0 since otherwise the assertion holds trivially. For
any t € R we have

0<|v+ tw\2
(v + tw)e (v + tw)
=vev + ve(tw) + (tw)ev + (tw) e (tw)

—vevttvew +twev + t2twew
= [v)? + 2tvew + t*|w?
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Setting
vew

wP?
and doing a little bit of manipulation we infer the desired inequality. If |v e w| =
|v||]w| we find that |v + tw| = 0 so that {v,w} is indeed dependent. O

t =

Theorem 0.2 (The triangle inequality.). For any v,w € V' we have that
v+ w| < |of + [wl,
with equality only if {v,w} is dependent.
Proof. Square both sides and use the Cauchy-Schwartz inequality. O

Theorem 0.3 (The Parallelogram Law.). Suppose v,w € V. Then
v+ w|? + v — w|* = 2(Jv]* + |w]?).
Proof. Turn the crank. O
Things to do.

i) Justify the use of term length above.

ii) We say v is perpendicular to w and write
v L w
if
vew = (.
Justify the use of this terminology.

ili) Suppose f and g are continuous real value functions on the interval [a,b].

Show that b

I/abf(x)g(w)dxl < (/abf(:c)2 dz)? (/a g(z)? dx)?.

Hilbert space
Let A be a set.

We let
HA:{xGRA:in<oo}.
acA
Suppose x,y € H4 and F is a finite subset of A. By the Cauchy-Schwarz inequality
in RY we have

(Y Jrasal)” < (D0 22) (D0 02) < (3 22) (D w2) < .

ackF a€EF a€EF aca acA
Thus we may define
rey= E TaYa
acA

and thereby make H 4 into an inner product space. We have

|z|? = Z x2 for x € Hy.
acA



For each o € A we define e, € H,4 by setting
1 ifa=4,
(Ca)s = {O else, ’
we note the |e,| = 1 and we define the linear map
e“:Hy - R
by setting e*(z) = z,. Evidently,
le*(z)] < |z|, x€ Ha.
For each subset B of A we define the linear map
Pg:Hs—-Hy
by setting
zo ifaeB,

Po(w)a = {0 else

for x € Hy. We have
|Ppuc(x)|? + | Ppnc(x))* = |Pp(x)|> + |Po(z)|*> whenever B,C C A and x € Hy.

Theorem 0.4. H 4 is complete.
Proof. Suppose C is a nonempty family of nonempty closed subsets of H 4 such that
(1) inf{diamC : C € C} = 0.
For each o € A let C,, = {cle®[C] : C' € C. Inasmuch as
diam cle®[C] < diam C' whenever C € C

we infer that C, is a nonempty family of nonempty closed subsets of R such
inf{diamC : C € C,} = 0 whenever @ € A. Owing to the completeness of R
we may define z € R4 by requiring that

T € ﬂ{clea[C] :Cel}, ac A
Note that
(2) |Zo — Yol < diam C whenever y € C' € C.
To prove the Theorem we will show that

(3) x €NC.

Lemma 0.1. x € Hy.

Proof. Suppose F' is a finite subset of A. Using the Cauchy-Schwartz Inequality in
RY we find that, for any y € C € C,

2| F| < [(x = y)|F| + [y[F| = | (20 —ya)? + |Pr(y)| < V/|F|diam C + [y|.
a€EF

That « € H, now follows from (1). O
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Lemma 0.2. Suppose C € C and € > 0. There exists a finite subset G of A such
that
|Parc(y)| < diamC +e fory e C.

Proof. Let z € C. Let G be a finite subset of A such that |Pa~g(2)| < €. For any
y € C' we have

|Pa~c(Y)] < |Pa~c(y — 2)| + [Panc(2)| < |y — 2| + [Pa~c(2)] < diam C + ¢
O

Suppose C' € C and € > 0. (3) will follow if we can show that
(4) B,(e)NC #0.
Using Lemma Two and (1) choose a finite subset G of A and D € C such that
D c C and |Pa~c(y)| < €/3 whenever y € D. Next use Lemma One to choose
a finite subset F' of A such that G C F and |Pa~r(x)| < ¢/3. Finally use (1) to
choose E € C such that E C D and +/|F|diam E < ¢/3. Let y € D. Then by (2)

2=yl < |Pr(z—y)|+|Pa~r (2)|+|Panr(y)| < VEdiam E+|Pavr (2)|+ Paca(y)] < €
so y € B;(e) and (4) holds. O

Yedddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddadddddds

By={recHu:|z] <1}
Then B, is closed and bounded. It is not totally bounded if A is infinite. That is

because
leq —ep| = V2 whenever a, f € A and a # 8

so that if 0 < 7 < /2 then no two of the e,’s can belong to any closed ball of
radius 7 and so H 4 is not contained in the union of a finite number of closed balls
of radius r.

Discarding members of C whose diameter exceeds a given positive real number if
necessary, we see we may assume without loss of generality that there is a positive
real number R such that diam C < R whenever C € C. Whenever F is a finite
subset of A and y € C € C we may use the Cauchy-Schwartz inequality in R to
infer that

Zx?x < Z(ma—ya)2+ Zyg < /|F|diam C + R.

acF acF acF

Since we the diameter of C here can be made arbitrarily small, we find that z € H4
and |z| < R.
Suppose € > 0. We will show that

(1) B.(e)NC #( for any C € C

and that will complete the proof. Choose Cy € C such that diam C' < ¢/4. Choose
y € Cy. Choose a finite subset F' of A such that

|Px~r(z)| < €/4 and [Px~r(y)] < €/4.
Whenever z € C € C and C C Cy we have
r—z=Pp(x—2)+ Pavr(®) + Pacr(y — 2) — Pavr(y).



Using the Triangle Inequality we infer that
|# = 2| < |[Pp(z = 2)[ + [Panr(2)] + [Panr(y = 2)| + [Pacr (y)]
< |Fldiam C + ¢/4 + diam Cy + ¢/4
< |F|diam C + 3¢/4
<e€
provided |F|diam C < ¢/4. Thus (1) holds since C is nested.



