Hermitian inner products.

Suppose V is vector space over \mathbb{C} and

 (\cdot, \cdot)

is a **Hermitian inner product on** V. This means, by definition, that

$$(\cdot, \cdot): V \times V \to \mathbb{C}$$

and that the following four conditions hold:

- (i) $(v_1 + v_2, w) = (v_1, w) + (v_2, w)$ whenever $v_1, v_2, w \in V$;
- (ii) (cv, w) = c(v, w) whenever $c \in \mathbb{C}$ and $v, w \in V$;
- (iii) $(w, v) = \overline{(v, w)}$ whenever $v, w \in V$;
- (iv) (v, v) is a positive real number for any $v \in V \sim \{0\}$.

These conditions imply that

- (v) $(v, w_1 + w_2) = (v, w_1) + (v, w_2)$ whenever $v, w_1, w_2 \in V$;
- (vi) $(v, cw) = \overline{c}(v, w)$ whenever $c \in \mathbb{C}$ and $v, w \in V$;
- (vii) (0, v) = 0 = (v, 0) for any $v \in V$.

In view of (iv) and (vii) we may set

$$||v|| = \sqrt{(v,v)} \quad \text{for } v \in V$$

and note that

(viii)
$$||v|| = 0 \Leftrightarrow v = 0.$$

We call ||v|| the **norm of** v. Note that

(ix) ||cv|| = |c|||v|| whenever $c \in \mathbb{C}$ and $v \in V$.

Suppose

 $A: V \times V \to \mathbb{R}$ and $B: V \times V \to \mathbb{R}$

are such that

(1)
$$(v,w) = A(v,w) + iB(v,w)$$
 whenever $v,w \in V$.

One easily verifies that

- (i) A and B are bilinear over \mathbb{R} ;
- (ii) A is symmetric and positive definite;
- (iii) B is antisymmetric;
- (iv) A(iv, iw) = A(v, w) whenever $v, w \in V$;

(v) B(v, w) = -A(iv, w) whenever $v, w \in V$.

Conversely, given $A: V \times V \to \mathbb{R}$ which is bilinear over \mathbb{R} and which is positive definite symmetric, letting B be as in (v) and let (\cdot, \cdot) be as in (1) we find that (\cdot, \cdot) is a Hermitian inner product on V. The interested reader might write down conditions on B which allow one to construct A and (\cdot, \cdot) as well.

Example 0.1. Let

$$(z,w) = \sum_{j=1}^{n} z_j \overline{w_j} \text{ for } z, w \in \mathbb{C}^n.$$

The (\cdot, \cdot) is easily seen to be a Hermitian inner product, called the **standard** (Hermitian) inner product, on \mathbb{C}^n .

Example 0.2. Suppose $-\infty < a < b < \infty$ and \mathcal{H} is the vector space of complex valued square integrable functions on [a, b]. You may object that I haven't told you what "square integrable" means. Now I will. Sort of. To say $f : [a, b] \to \mathbb{R}$ is square integrable means that f is Lebesgue measurable and that

$$\int_{a}^{b} |f(x)|^2 \, dx < \infty;$$

of course I haven't told you what "Lebesgue measurable" means and I haven't told you what \int_a^b means, but I will in the very near future. For the time being just think of whatever notion of integration you're familiar with.

Note that

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} \Re f(x) \, dx + i \int_{a}^{b} \Im f(x) \, dx$$

whenever $f \in \mathcal{H}$.

Let

$$(f,g) = \int_{a}^{b} f(x)\overline{g(x)} dx$$
 whenever $f,g \in \mathcal{H}$.

You should object at this point that the integral may not exist. We will show shortly that it does. One easily verifies that (i)-(iii) of the properties of an inner product hold and that (iv) *almost* holds in the sense that for any $f \in \mathcal{F}$ we have

$$(f,f) = \int_{a}^{b} |f(x)|^{2} dx \ge 0$$

with equality only if $\{x \in [a, b] : f(x) = 0\}$ has zero Lebesgue measure (whatever that means). In particular, if f is continuous and (f, f) = 0 then f(x) = 0 for all $x \in [a, b]$.

This Example is like Example One in that one can think of $f \in \mathcal{H}$ as a an infinite-tuple with the continuous index $x \in [a, b]$.

Henceforth V is a Hermitian inner product space.

The following simple Proposition is indispensable.

Proposition 0.1. Suppose $v, w \in V$. Then

$$||v + w||^{2} = ||v||^{2} + 2\Re(v, w) + ||w||^{2}.$$

 $\mathbf{2}$

Proof. We have

$$||v + w||^{2} = (v + w, v + w)$$

= $(v, v) + (v, w) + (w, v) + (w, w)$
= $(v, v) + (v, w) + \overline{(v, w)} + (w, w)$
= $||v||^{2} + 2\Re(v, w) + ||w||^{2}$.

Corollary 0.1 (The Parallelogram Law.). We have

$$||v + w||^{2} + ||v - w||^{2} = 2(||v||^{2} + ||w||^{2}).$$

Proof. Look at it.

Here is an absolutely fundamental consequence of the Parallelogram Law.

Theorem 0.1. Suppose V is complete with respect to $|| \cdot ||$ and C is a nonempty closed convex subset of V. Then there is a unique point $c \in C$ such that

 $||c|| \leq ||v||$ whenever $v \in C$.

Remark 0.1. Draw a picture.

 $\textit{Proof.} \ \text{Let}$

$$d = \inf\{||v|| : v \in C\}$$

and let

$$\mathcal{C} = \{ C \cap \mathbf{B}^0(r) : d < r < \infty \}.$$

Note that C is a nonempty nested family of nonempty closed subsets of V.

Suppose $C \in \mathcal{C}$, $d < r < \infty$ and $v, w \in C$. Because C is convex we have $\frac{1}{2}(v+w) \in C \cap \mathbf{B}^0(R)$ so

$$\frac{1}{4}||v+w||^2 = ||\frac{1}{2}(v+w)||^2 \ge d^2.$$

Thus, by the Parallelogram Law,

$$\frac{1}{4}||v-w||^2 = \frac{1}{2}\left(||v||^2 + ||w||^2\right) - \frac{1}{4}||v+w||^2 \le r^2 - d^2.$$

It follows that

$$\inf \{\operatorname{diam} C \cap \mathbf{B}^0(r) : d < r < \infty \} = 0$$

By completeness there is a point $c \in V$ such that

$$\{c\} = \cap \mathcal{C}.$$

Corollary 0.2. Suppose U is a closed linear subspace of V and $v \in V$. Then there is a unique $u \in U$ such that

$$||v - u|| \le ||v - u'||$$
 whenever $u' \in U$.

Remark 0.2. Draw a picture.

Remark 0.3. We will show very shortly that any finite dimensional subspace of V is closed.

4

Proof. Let C = v - U and note that C is a nonempty closed convex subset of V. (Of course -U = U since U is a linear subspace of U, but this representation of C is more convenient for our purposes.) By virtue of the preceding Theorem there is a unique $u \in U$ such that

$$||v - u|| \le ||v - u'||$$
 whenever $u' \in U$.

Theorem 0.2 (The Cauchy-Schwartz Inequality.). Suppose $v, w \in V$. Then

 $|(v,w)| \le ||v||||w||$

with equality only if $\{v, w\}$ is dependent.

Proof. If w = 0 the assertion holds trivially so let us suppose $w \neq 0$. For any $c \in \mathbb{C}$ we have

 $0 \leq ||v + cw||^2 = ||v||^2 + 2\Re(v, cw) + ||cw||^2 = ||v||^2 + 2\Re(\bar{c}(v, w)) + |c|^2 ||w||^2.$ Letting

$$c = -\frac{(v,w)}{||w||^2}$$

we find that

$$0 \le ||v||^2 - \frac{|(v,w)|^2}{||w||^2}$$

with equality only if ||v + cw|| = 0 in which case v + cw = 0 so v = -cw.

Corollary 0.3. Suppose a and b are sequences of complex numbers. Then

$$\sum_{n=0}^{\infty} |a_n b_n| \le \left(\sum_{n=0}^{\infty} |a_n|^2\right)^{1/2} \left(\sum_{n=0}^{\infty} |b_n|^2\right)^{1/2}.$$

Proof. For any nonnegative integer N apply the Cauchy-Schwartz inequality with (\cdot, \cdot) equal the standard inner product on \mathbb{C}^N ,

$$v = (a_0, \dots, a_N)$$
 and $w = (b_0, \dots, b_N)$

and then let $N \to \infty$.

Theorem 0.3 (The Triangle Inequality.). Suppose
$$v, w \in V$$
. Then

$$|v + w|| \le ||v|| + ||w||$$

with equality only if either v is a nonnegative multiple of w or w is a nonnegative multiple of v.

Proof. Using the Cauchy-Schwartz Inequality we find that

$$||v+w||^{2} = ||v||^{2} + 2\Re(v,w) + ||w||^{2} \le ||v||^{2} + 2||v||||w|| + ||w||^{2} = (||v|| + ||w||)^{2}.$$

Suppose equality holds. In case v = 0 then v = 0w so suppose $v \neq 0$. Since $|(v,w)| \geq \Re(v,w) = ||v|| ||w||$ we infer from the Cauchy-Schwartz Inequality that w = cv for some $c \in \mathbb{C}$. Thus

$$|1 + c|||v|| = ||(1 + c)v)|| = ||v + cw|| = ||v|| + ||cw|| = (1 + |c|)||v||$$

from which we infer that

$$1 + 2\Re c + |c|^2 = |1 + c|^2 = (1 + |c|)^2 = 1 + 2|c| + |c|^2$$

which implies that c is a nonnegative real number.

Definition 0.1. Suppose U is a linear subspace of V. We let

$$U^{\perp} = \{ v \in V : (u, v) = 0 \text{ for all } u \in U \}$$

and note that U^{\perp} is a linear subspace of V. It follows directly from (iv) that

$$U \cap U^{\perp} = \{0\}$$

Proposition 0.2. Suppose U is a linear subspace of V. Then

$$U \subset U^{\perp \perp}$$

and U^{\perp} is closed.

Proof. The first assertion is an immediate consequence of the definition of U^{\perp} . The second follows because U^{\perp} is the intersection of the closed sets

$$\{v \in V : (u, v) = 0\}$$

corresponding to $u \in U$; These sets are closed because $V \ni v \mapsto (u, v)$ is continuous by virtue of the Cauchy-Schwartz Inequality.

Orthogonal projections.

Henceforth U is closed linear subspace of V.

Definition 0.2. Keeping in mind the foregoing, we define

$$P: V \to U$$

by requiring that

$$||v - Pv|| \le ||v - u'||$$
 whenever $u' \in U$.

That is, Pv is the closest point in U to v. We call P orthogonal projection of V onto U. Note that Pu = u whenever $u \in U$. Thus

$$\operatorname{\mathbf{rng}} P = U$$
 and $P \circ P = P$.

Keeping in mind that U^{\perp} is a closed linear subspace of V we let

$$P^{\perp}$$

be orthogonal projection of V onto U^{\perp} .

Theorem 0.4. Suppose W is a linear subspace of V and

$$Q: V \to W$$

is such that

$$||w - Qv|| \le ||v - w||$$
 whenever $v \in V$ and $w \in W$.

Then W is closed and Q is orthogonal projection of V onto W.

Proof. Suppose $\tilde{w} \in \mathbf{cl} W$ and $\epsilon > 0$. Choose $w \in W$ such that $||\tilde{w} - w|| \le \epsilon$. Then

$$||\tilde{w} - Q\tilde{w}|| \le ||\tilde{w} - w|| \le \epsilon$$

Owing to the arbitrariness of ϵ we infer that $||Q\tilde{w} - w|| = 0$ so $w = Q\tilde{w} \in W$ and $\mathbf{cl} W \subset W$.

Theorem 0.5. We have

$$u = Pv \iff v - u \in U^{\perp}$$
 whenever $u \in U$ and $v \in V$.

Proof. Suppose $u \in U$ and $v \in V$. For each $(t, u') \in \mathbf{R} \times U$ let

$$f(t, u') = ||(v - u) + tu'||^2$$

and note that

$$f(t, u') = ||v - u||^2 + 2t\Re(v - u, u') + t^2||u'||^2.$$

Suppose u = Pv. Then $f(0, u') \leq f(t, u')$ whenever $(t, u') \in \mathbf{R} \times U$. Thus $v - u \in U^{\perp}$.

Suppose $v - u \in U^{\perp}$. Then

$$||v - u||^{2} = f(0, u' - u) \le f(1, u' - u) = ||v - u'||^{2}$$

Pv.

so u = Pv.

Corollary 0.4. P is linear.

Proof. Suppose $v \in V$ and $c \in \mathbb{C}$. Then $cPv \in U$ and $cv - cPv = c(v - Pv) \in U^{\perp}$ so P(cv) = cPv. Suppose $v_1, v_2 \in V$. then $Pv_1 + Pv_2 \in U$ and $(v_1 + v_2) - (Pv_1 + Pv_2) = (v_1 - Pv_1) + (v_2 - Pv_2) \in U^{\perp}$ so $P(v_1 + v_2) = Pv_1 + Pv_2$. □

Corollary 0.5. Suppose $v \in V$. Then

- (i) $v = Pv + P^{\perp}v$ and
- (ii) $||v||^2 = ||Pv||^2 + ||P^{\perp}v||^2$.

Proof. We have $v - Pv \in U^{\perp}$ by the preceding Theorem and

$$v - (v - Pv) = Pv \in U \subset U^{\perp \perp}$$

so, again by the preceding Theorem only with U replaced by U^{\perp} we find that $P^{\perp}v = v - Pv$. It follows that

$$||v||^{2} = ||Pv + P^{\perp}v||^{2} = ||Pv||^{2} + 2\Re(Pv, P^{\perp}v) + ||P^{\perp}v||^{2} = ||Pv||^{2} + ||P^{\perp}v||^{2}.$$

Corollary 0.6. We have

$$U^{\perp\perp} = U$$

and

$$(Pv, w) = (v, Pw)$$
 whenever $v, w \in V$.

Proof. Let P and P^{\perp} be orthogonal projection of V onto U and U^{\perp} , respectively. By the preceding Theorem with U replaced by U^{\perp} we find that orthogonal projection of V onto $U^{\perp\perp}$ carries $v \in V$ to $v - P^{\perp}v = Pv$. Thus $U = U^{\perp\perp}$. Suppose $v, w \in V$. Then

$$(Pv, w) = (Pv, Pw + P^{\perp}w) = (Pv, Pw) = (Pv + P^{\perp}v, Pw) = (v, Pw).$$

Definition 0.3. We say a subset A of V is **orthonormal** if whenever $v, w \in A$ we have

$$(v,w) = \begin{cases} 1 & \text{if } v = w; \\ 0 & \text{if } v \neq w. \end{cases}$$

Exercise 0.1. Show that any orthonormal set is independent.

The Gram-Schmidt Process. Suppose $\tilde{u} \in V \sim U$, $\tilde{U} = \{u + c\tilde{u} : c \in \mathbb{C}\}$ and

$$\tilde{P}v = Pv + \frac{(v, P^{\perp}\tilde{u})}{||P^{\perp}\tilde{u}||^2}P^{\perp}\tilde{u} \quad \text{whenever } v \in V.$$

Then \tilde{U} is closed and \tilde{P} is orthogonal projection on \tilde{U} .

Proof. Easy exercise for the reader.

Remark 0.4. If $U = \{0\}$ then P = 0 so

$$\tilde{P}(v) = \frac{(v, \tilde{u})}{||\tilde{u}||^2} \tilde{u}$$

and \tilde{P} is orthogonal projection on the line $\{c\tilde{u} : c \in \mathbb{C}\}$.

Corollary 0.7. Any finite dimensional subspace of V is closed and has an orthonormal basis.

Proof. Induct on the dimension of the subspace and use the Gram-Schmidt Process to carry out the inductive step. $\hfill \Box$

Proposition 0.3. Suppose U is finite dimensional and B is an orthnormal basis for U. Then

$$Pv = \sum_{u \in B} (v, u)u \quad \text{and} \quad ||Pv||^2 = \sum_{u \in B} |(v, u)|^2 \quad \text{ whenever } v \in V.$$

Proof. Let

$$Lv = \sum_{u \in B} (v, u)u \text{ for } v \in V.$$

Suppose $v \in V$ and $\tilde{u} \in B$. The

$$(v - Lv, \tilde{u}) = (v - \sum_{u \in B} (v, u)u, \tilde{u})$$
$$= (v, \tilde{u}) - \sum_{u \in B} (v, u)(u, \tilde{u})$$
$$= (v, \tilde{u}) - (v, \tilde{u})$$
$$= 0$$

which, as B is a basis for U, implies that $v - Lv \in U^{\perp}$; thus P = L. Finally, if $v \in V$ we have

$$||Lv||^{2} = \left(\sum_{u \in B} (v, u)u, \sum_{\tilde{u} \in B} (v, \tilde{u})\tilde{u}\right)$$
$$= \sum_{u \in B, \ \tilde{u} \in B} (v, u)\overline{(v, \tilde{u})}(u, \tilde{u})$$
$$= \sum_{u \in B} |(u, v)|^{2}.$$

Hilbert space.

Let X be a set and let

$$\mathbf{H}_X = \{ u \in \mathbf{C}^X : \sum_X |u|^2 < \infty \}.$$

Proposition 0.4. Suppose $u, v \in \mathbf{H}_X$. Then

$$\sum_X |uv| < \infty.$$

Proof. Suppose F is a finite subset of X. The Cauchy-Schwartz Inequality implies that

$$\left(\sum_{F} |uv|\right)^{2} \leq \left(\sum_{F} |u|^{2}\right) \left(\sum_{F} |v|^{2}\right) \leq \left(\sum_{X} |u|^{2}\right) \left(\sum_{X} |v|^{2}\right) < \infty.$$

Definition 0.4. Keeping in mind the previous Proposition we let

$$(u,v) = \sum_{X} u\overline{v}$$
 whenever $u, v \in \mathbf{H}_X$.

One easily verifies that (\cdot, \cdot) is a Hermitian inner product on \mathbf{H}_X .

Definition 0.5. For each subset A of X let

 \mathbf{H}

Theorem 0.6. \mathbf{H}_X is complete.

Proof. Let \mathcal{C} be a nonempty nested family of nonempty closed subsets of \mathbf{H}_X such that $\inf \{ \operatorname{diam} C : C \in \mathcal{C} \} = 0$. For each $C \in \mathcal{C}$ let

$$b_C = \sup\{||v|| : v \in C\}.$$

By the triangle inequality there are $B \in [0, \infty)$ and $C_0 \in \mathcal{C}$ such that

 $b_{C_0} \leq B.$

Note that

 $b_C \leq b_B$ whenever $C \in \mathcal{C}$ and $C \subset C_0$.

For each $x \in X$ let $C_x = \operatorname{cl} \{ u(x) : u \in C \}$ for each $C \in \mathcal{C}$, note that

 $\operatorname{diam} C_x \leq \operatorname{diam} C \quad \text{for each } C \in \mathcal{C},$

and let

$$\mathcal{C}_x = \{C_x : C \in \mathcal{C}\}.$$

For each $x \in X$ the family \mathcal{C}_x is a nonempty nested family of nonempty closed subsets of **C** and $\inf\{\operatorname{diam} C_x : C \in \mathcal{C}\} = 0$. Since **C** is complete there is one and only $u \in \mathbf{C}^X$ such that

$$u(x) \in \cap \mathcal{C}_x$$
 whenever $x \in X$.

Suppose F is a finite subset of X. Choose $C \in \mathcal{C}$ such that $C \subset C_0$ and $|F| \operatorname{diam} C^2 \leq 1$. Suppose $v \in C$. We infer from the Triangle Inequality that

$$\left(\sum_{F} |u|^{2}\right)^{1/2} \leq \left(\sum_{F} |u-v|^{2}\right)^{1/2} + \left(\sum_{F} |v|^{2}\right)^{1/2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\} + ||v||^{2} \leq \sqrt{|F|} \max\{\operatorname{diam} C_{x} : x \in F\}$$

follows that

$$u \in \mathbf{H}_X$$
.

Suppose $\epsilon > 0$. and

$$\left(\sum_{F} |u-v|^2\right)^{1/2} \le \left(\sum_{F} |u-v|^2\right)^{1/2} + \left(\sum_{F} |v|^2\right)^{1/2} \le \sqrt{|F|} \max\{\operatorname{diam} C_x : x \in F\} + ||v||^2$$