
Hermitian inner products.

Suppose V is vector space over C and

(·, ·)

is a Hermitian inner product on V . This means, by definition, that

(·, ·) : V × V → C

and that the following four conditions hold:

(i) (v1 + v2, w) = (v1, w) + (v2, w) whenever v1, v2, w ∈ V ;

(ii) (cv, w) = c(v, w) whenever c ∈ C and v, w ∈ V ;

(iii) (w, v) = (v, w) whenever v, w ∈ V ;

(iv) (v, v) is a positive real number for any v ∈ V ∼ {0}.

These conditions imply that

(v) (v, w1 + w2) = (v, w1) + (v, w2) whenever v, w1, w2 ∈ V ;

(vi) (v, cw) = c(v, w) whenever c ∈ C and v, w ∈ V ;

(vii) (0, v) = 0 = (v, 0) for any v ∈ V .

In view of (iv) and (vii) we may set

||v|| =
√

(v, v) for v ∈ V

and note that

(viii) ||v|| = 0 ⇔ v = 0.

We call ||v|| the norm of v. Note that

(ix) ||cv|| = |c|||v|| whenever c ∈ C and v ∈ V .

Suppose

A : V × V → R and B : V × V → R
are such that

(1) (v, w) = A(v, w) + iB(v, w) whenever v, w ∈ V .

One easily verifies that

(i) A and B are bilinear over R;

(ii) A is symmetric and positive definite;

(iii) B is antisymmetric;

(iv) A(iv, iw) = A(v, w) whenever v, w ∈ V ;
1
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(v) B(v, w) = −A(iv, w) whenever v, w ∈ V .

Conversely, given A : V × V → R which is bilinear over R and which is positive
definite symmetric, letting B be as in (v) and let (·, ·) be as in (1) we find that
(·, ·) is a Hermitian inner product on V . The interested reader might write down
conditions on B which allow one to construct A and (·, ·) as well.

Example 0.1. Let

(z, w) =

n∑
j=1

zjwj for z, w ∈ Cn.

The (·, ·) is easily seen to be a Hermitian inner product, called the standard
(Hermitian) inner product, on Cn.

Example 0.2. Suppose −∞ < a < b < ∞ and H is the vector space of complex
valued square integrable functions on [a, b]. You may object that I haven’t told
you what “square integrable” means. Now I will. Sort of. To say f : [a, b] → R is
square integrable means that f is Lebesgue measurable and that∫ b

a

|f(x)|2 dx < ∞;

of course I haven’t told you what “Lebesgue measurable” means and I haven’t told

you what
∫ b

a
means, but I will in the very near future. For the time being just

think of whatever notion of integration you’re familiar with.

Note that ∫ b

a

f(x) dx =

∫ b

a

ℜf(x) dx+ i

∫ b

a

ℑf(x) dx

whenever f ∈ H.
Let

(f, g) =

∫ b

a

f(x)g(x) dx whenever f, g ∈ H.

You should object at this point that the integral may not exist. We will show
shortly that it does. One easily verifies that (i)-(iii) of the properties of an inner
product hold and that (iv) almost holds in the sense that for any f ∈ F we have

(f, f) =

∫ b

a

|f(x)|2 dx ≥ 0

with equality only if {x ∈ [a, b] : f(x) = 0} has zero Lebesgue measure (whatever
that means). In particular, if f is continuous and (f, f) = 0 then f(x) = 0 for all
x ∈ [a, b].

This Example is like Example One in that one can think of f ∈ H as a an
infinite-tuple with the continuous index x ∈ [a, b].

Henceforth V is a Hermitian inner product space.

The following simple Proposition is indispensable.

Proposition 0.1. Suppose v, w ∈ V . Then

||v + w||2 = ||v||2 + 2ℜ(v, w) + ||w||2.
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Proof. We have

||v + w||2 = (v + w, v + w)

= (v, v) + (v, w) + (w, v) + (w,w)

= (v, v) + (v, w) + (v, w) + (w,w)

= ||v||2 + 2ℜ(v, w) + ||w||2.
□

Corollary 0.1 (The Parallelogram Law.). We have

||v + w||2 + ||v − w||2 = 2
(
||v||2 + ||w||2

)
.

Proof. Look at it. □

Here is an absolutely fundamental consequence of the Parallelogram Law.

Theorem 0.1. Suppose V is complete with respect to || · || and C is a nonempty
closed convex subset of V . Then there is a unique point c ∈ C such that

||c|| ≤ ||v|| whenever v ∈ C.

Remark 0.1. Draw a picture.

Proof. Let
d = inf{||v|| : v ∈ C}

and let
C = {C ∩B0(r) : d < r < ∞}.

Note that C is a nonempty nested family of nonempty closed subsets of V .
Suppose C ∈ C, d < r < ∞ and v, w ∈ C. Because C is convex we have

1
2 (v + w) ∈ C ∩B0(R) so

1

4
||v + w||2 = ||1

2
(v + w)||2 ≥ d2.

Thus, by the Parallelogram Law,

1

4
||v − w||2 =

1

2

(
||v||2 + ||w||2

)
− 1

4
||v + w||2 ≤ r2 − d2.

It follows that
inf{diamC ∩B0(r) : d < r < ∞} = 0.

By completeness there is a point c ∈ V such that

{c} = ∩C.
□

Corollary 0.2. Suppose U is a closed linear subspace of V and v ∈ V . Then there
is a unique u ∈ U such that

||v − u|| ≤ ||v − u′|| whenever u′ ∈ U .

Remark 0.2. Draw a picture.

Remark 0.3. We will show very shortly that any finite dimensional subspace of
V is closed.
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Proof. Let C = v − U and note that C is a nonempty closed convex subset of V .
(Of course −U = U since U is a linear subspace of U , but this representation of C
is more convenient for our purposes.) By virtue of the preceding Theorem there is
a unique u ∈ U such that

||v − u|| ≤ ||v − u′|| whenever u′ ∈ U .

□

Theorem 0.2 (The Cauchy-Schwartz Inequality.). Suppose v, w ∈ V . Then

|(v, w)| ≤ ||v||||w||
with equality only if {v, w} is dependent.

Proof. If w = 0 the assertion holds trivially so let us suppose w ̸= 0. For any c ∈ C
we have

0 ≤ ||v + cw||2 = ||v||2 + 2ℜ(v, cw) + ||cw||2 = ||v||2 + 2ℜ(c(v, w)) + |c|2||w||2.
Letting

c = − (v, w)

||w||2
we find that

0 ≤ ||v||2 − |(v, w)|2

||w||2
with equality only if ||v + cw|| = 0 in which case v + cw = 0 so v = −cw. □

Corollary 0.3. Suppose a and b are sequences of complex numbers. Then

∞∑
n=0

|anbn| ≤

( ∞∑
n=0

|an|2
)1/2( ∞∑

n=0

|bn|2
)1/2

.

Proof. For any nonnegative integer N apply the Cauchy-Schwartz inequality with
(·, ·) equal the standard inner product on CN ,

v = (a0, . . . , aN ) and w = (b0, . . . , bN )

and then let N → ∞. □

Theorem 0.3 (The Triangle Inequality.). Suppose v, w ∈ V . Then

||v + w|| ≤ ||v||+ ||w||
with equality only if either v is a nonnegative multiple of w or w is a nonnegative
multiple of v.

Proof. Using the Cauchy-Schwartz Inequality we find that

||v + w||2 = ||v||2 + 2ℜ(v, w) + ||w||2 ≤ ||v||2 + 2||v||||w||+ ||w||2 = (||v||+ ||w||)2.
Suppose equality holds. In case v = 0 then v = 0w so suppose v ̸= 0. Since

|(v, w)| ≥ ℜ(v, w) = ||v||||w|| we infer from the Cauchy-Schwartz Inequality that
w = cv for some c ∈ C. Thus

|1 + c|||v|| = ||(1 + c)v)|| = ||v + cw|| = ||v||+ ||cw|| = (1 + |c|)||v||
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from which we infer that

1 + 2ℜc+ |c|2 = |1 + c|2 = (1 + |c|)2 = 1 + 2|c|+ |c|2

which implies that c is a nonnegative real number. □

Definition 0.1. Suppose U is a linear subspace of V . We let

U⊥ = {v ∈ V : (u, v) = 0 for all u ∈ U}
and note that U⊥ is a linear subspace of V . It follows directly from (iv) that

U ∩ U⊥ = {0}.

Proposition 0.2. Suppose U is a linear subspace of V . Then

U ⊂ U⊥⊥

and U⊥ is closed.

Proof. The first assertion is an immediate consequence of the definition of U⊥. The
second follows because U⊥ is the intersection of the closed sets

{v ∈ V : (u, v) = 0}
corresponding to u ∈ U ; These sets are closed because V ∋ v 7→ (u, v) is continuous
by virtue of the Cauchy-Schwartz Inequality. □

Orthogonal projections.

Henceforth U is closed linear subspace of V .

Definition 0.2. Keeping in mind the foregoing, we define

P : V → U

by requiring that

||v − Pv|| ≤ ||v − u′|| whenever u′ ∈ U .

That is, Pv is the closest point in U to v. We call P orthogonal projection
of V onto U . Note that Pu = u whenever u ∈ U . Thus

rngP = U and P ◦ P = P.

Keeping in mind that U⊥ is a closed linear subspace of V we let

P⊥

be orthogonal projection of V onto U⊥.

Theorem 0.4. Suppose W is a linear subspace of V and

Q : V → W

is such that

||w −Qv|| ≤ ||v − w|| whenever v ∈ V and w ∈ W .

Then W is closed and Q is orthogonal projection of V onto W .
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Proof. Suppose w̃ ∈ clW and ϵ > 0. Choose w ∈ W such that ||w̃−w|| ≤ ϵ. Then

||w̃ −Qw̃|| ≤ ||w̃ − w|| ≤ ϵ.

Owing to the arbitrariness of ϵ we infer that ||Qw̃ − w|| = 0 so w = Qw̃ ∈ W and
clW ⊂ W . □

Theorem 0.5. We have

u = Pv ⇔ v − u ∈ U⊥ whenever u ∈ U and v ∈ V .

Proof. Suppose u ∈ U and v ∈ V . For each (t, u′) ∈ R× U let

f(t, u′) = ||(v − u) + tu′||2

and note that

f(t, u′) = ||v − u||2 + 2tℜ(v − u, u′) + t2||u′||2.

Suppose u = Pv. Then f(0, u′) ≤ f(t, u′) whenever (t, u′) ∈ R × U . Thus
v − u ∈ U⊥.

Suppose v − u ∈ U⊥. Then

||v − u||2 = f(0, u′ − u) ≤ f(1, u′ − u) = ||v − u′||2

so u = Pv. □

Corollary 0.4. P is linear.

Proof. Suppose v ∈ V and c ∈ C. Then cPv ∈ U and cv−cPv = c(v−Pv) ∈ U⊥ so
P (cv) = cPv. Suppose v1, v2 ∈ V . then Pv1+Pv2 ∈ U and (v1+v2)−(Pv1+Pv2) =
(v1 − Pv1) + (v2 − Pv2) ∈ U⊥ so P (v1 + v2) = Pv1 + Pv2. □

Corollary 0.5. Suppose v ∈ V . Then

(i) v = Pv + P⊥v and

(ii) ||v||2 = ||Pv||2 + ||P⊥v||2.

Proof. We have v − Pv ∈ U⊥ by the preceding Theorem and

v − (v − Pv) = Pv ∈ U ⊂ U⊥⊥

so, again by the preceding Theorem only with U replaced by U⊥ we find that
P⊥v = v − Pv. It follows that

||v||2 = ||Pv + P⊥v||2 = ||Pv||2 + 2ℜ(Pv, P⊥v) + ||P⊥v||2 = ||Pv||2 + ||P⊥v||2.

□

Corollary 0.6. We have

U⊥⊥ = U

and

(Pv,w) = (v, Pw) whenever v, w ∈ V .
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Proof. Let P and P⊥ be orthogonal projection of V onto U and U⊥, respectively.
By the preceding Theorem with U replaced by U⊥ we find that orthogonal projec-
tion of V onto U⊥⊥ carries v ∈ V to v − P⊥v = Pv. Thus U = U⊥⊥.

Suppose v, w ∈ V . Then

(Pv,w) = (Pv, Pw + P⊥w) = (Pv, Pw) = (Pv + P⊥v, Pw) = (v, Pw).

□

Definition 0.3. We say a subset A of V is orthonormal if whenever v, w ∈ A we
have

(v, w) =

{
1 if v = w;

0 if v ̸= w.

Exercise 0.1. Show that any orthonormal set is independent.

The Gram-Schmidt Process. Suppose ũ ∈ V ∼ U , Ũ = {u+ cũ : c ∈ C} and

P̃ v = Pv +
(v, P⊥ũ)

||P⊥ũ||2
P⊥ũ whenever v ∈ V .

Then Ũ is closed and P̃ is orthogonal projection on Ũ .

Proof. Easy exercise for the reader. □

Remark 0.4. If U = {0} then P = 0 so

P̃ (v) =
(v, ũ)

||ũ||2
ũ

and P̃ is orthogonal projection on the line {cũ : c ∈ C}.

Corollary 0.7. Any finite dimensional subspace of V is closed and has an or-
thonormal basis.

Proof. Induct on the dimension of the subspace and use the Gram-Schmidt Process
to carry out the inductive step. □

Proposition 0.3. Suppose U is finite dimensional and B is an orthnormal basis
for U . Then

Pv =
∑
u∈B

(v, u)u and ||Pv||2 =
∑
u∈B

|(v, u)|2 whenever v ∈ V .

Proof. Let

Lv =
∑
u∈B

(v, u)u for v ∈ V .
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Suppose v ∈ V and ũ ∈ B. The

(v − Lv, ũ) = (v −
∑
u∈B

(v, u)u, ũ)

= (v, ũ)−
∑
u∈B

(v, u)(u, ũ)

= (v, ũ)− (v, ũ)

= 0

which, as B is a basis for U , implies that v − Lv ∈ U⊥; thus P = L.
Finally, if v ∈ V we have

||Lv||2 = (
∑
u∈B

(v, u)u,
∑
ũ∈B

(v, ũ)ũ)

=
∑

u∈B, ũ∈B

(v, u)(v, ũ)(u, ũ)

=
∑
u∈B

|(u, v)|2.

□

Hilbert space.

Let X be a set and let

HX = {u ∈ CX :
∑
X

|u|2 < ∞}.

Proposition 0.4. Suppose u, v ∈ HX . Then∑
X

|uv| < ∞.

Proof. Suppose F is a finite subset of X. The Cauchy-Schwartz Inequality implies
that (∑

F

|uv|

)2

≤

(∑
F

|u|2
)(∑

F

|v|2
)

≤

(∑
X

|u|2
)(∑

X

|v|2
)

< ∞.

□

Definition 0.4. Keeping in mind the previous Proposition we let

(u, v) =
∑
X

uv whenever u, v ∈ HX .

One easily verifies that (·, ·) is a Hermitian inner product on HX .

Definition 0.5. For each subset A of X let

H

Theorem 0.6. HX is complete.
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Proof. Let C be a nonempty nested family of nonempty closed subsets of HX such
that inf{diamC : C ∈ C} = 0. For each C ∈ C let

bC = sup{||v|| : v ∈ C}.
By the triangle inequality there are B ∈ [0,∞) and C0 ∈ C such that

bC0 ≤ B.

Note that
bC ≤ bB whenever C ∈ C and C ⊂ C0.

For each x ∈ X let Cx = cl {u(x) : u ∈ C} for each C ∈ C, note that

diamCx ≤ diamC for each C ∈ C,
and let

Cx = {Cx : C ∈ C}.
For each x ∈ X the family Cx is a nonempty nested family of nonempty closed

subsets of C and inf{diamCx : C ∈ C} = 0. Since C is complete there is one and
only u ∈ CX such that

u(x) ∈ ∩Cx whenever x ∈ X.

Suppose F is a finite subset of X. Choose C ∈ C such that C ⊂ C0 and
|F |diamC2 ≤ 1. Suppose v ∈ C. We infer from the Triangle Inequality that(∑

F

|u|2
)1/2

≤

(∑
F

|u− v|2
)1/2

+

(∑
F

|v|2
)1/2

≤
√
|F |max{diamCx : x ∈ F}+||v||2 ≤

√
|F |max{diamCx : x ∈ F}+b2C ≤ 1+b2C0

.

It follows that
u ∈ HX .

Suppose ϵ > 0.
and(∑
F

|u− v|2
)1/2

≤

(∑
F

|u− v|2
)1/2

+

(∑
F

|v|2
)1/2

≤
√

|F |max{diamCx : x ∈ F}+||v||2

□


