Hermitian inner products.

Suppose V is vector space over C and
()
is a Hermitian inner product on V. This means, by definition, that
(,):VxV—=>C
and that the following four conditions hold:

(i) (v1 + va,w) = (v1,w) + (va,w) whenever vy, ve, w € V;

(ii) (ev,w) = ¢(v,w) whenever ¢ € C and v,w € V;

(iii) (w,v) = (v,w) whenever v,w € V;

(iv) (v,v) is a positive real number for any v € V ~ {0}.
These conditions imply that

(v) (v,w1 +wsz) = (v,w1) + (v, w2) whenever v, wy,ws € V;
(vi) (v, cw) =¢(v,w) whenever ¢ € C and v,w € V;

(vii) (0,v) = 0 = (v,0) for any v € V.

In view of (iv) and (vii) we may set

[lv]| =/ (v,v) forveV

and note that
(viii) [Jv]] =0 & v=0.
We call ||v|| the norm of v. Note that
(ix) ||lev]| = |e|||v]| whenever ¢ € C and v € V.

Suppose
A:VxV =R and B:VxV >R

are such that
(1) (v,w) = A(v,w) + iB(v,w) whenever v,w € V.

One easily verifies that
(i) A and B are bilinear over R;
(ii) A is symmetric and positive definite;
(iii) B is antisymmetric;

(iv) A(iv,iw) = A(v,w) whenever v,w € V;
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(v) B(v,w) = —A(iv,w) whenever v,w € V.

Conversely, given A : V x V' — R which is bilinear over R and which is positive
definite symmetric, letting B be as in (v) and let (-,-) be as in (1) we find that
(+,-) is a Hermitian inner product on V. The interested reader might write down
conditions on B which allow one to construct A and (-,-) as well.

Example 0.1. Let
(z,w) = szuTj for z,w € C™.

j=1
The (-,-) is easily seen to be a Hermitian inner product, called the standard
(Hermitian) inner product, on C".

Example 0.2. Suppose —oo < a < b < oo and H is the vector space of complex
valued square integrable functions on [a,b]. You may object that I haven’t told
you what “square integrable” means. Now I will. Sort of. To say f : [a,b] — R is
square integrable means that f is Lebesgue measurable and that

b
/|ﬂm%m<m;

of course I haven’t told you what “Lebesgue measurable” means and I haven’t told
you what f; means, but I will in the very near future. For the time being just
think of whatever notion of integration you’re familiar with.

Note that

/abf(”“")dxZ/Qb%f(x)da:ﬂ/b%f(x)dx

whenever f € H.
Let

b
(f,9) :/ f(:z:)mdx whenever f,g € H.

You should object at this point that the integral may not exist. We will show
shortly that it does. One easily verifies that (i)-(iii) of the properties of an inner
product hold and that (iv) almost holds in the sense that for any f € F we have

b
(ﬁﬁ=/Nﬂ@szo

with equality only if {x € [a,b] : f(z) = 0} has zero Lebesgue measure (whatever
that means). In particular, if f is continuous and (f, f) = 0 then f(z) = 0 for all
x € [a,b].

This Example is like Example One in that one can think of f € H as a an
infinite-tuple with the continuous index = € [a, b].

Henceforth V is a Hermitian inner product space.

The following simple Proposition is indispensable.

Proposition 0.1. Suppose v,w € V. Then
o+ wl]? = {]o]|* + 2R (v, w) + |w|[*.



Proof. We have

[lv+wl|* = (v +w,v +w)
= (v,0) + (v,w) + (w,v) + (w, w)
:( (v.w)
= |

v,0) + (v,w) + (v,w) + (w, w)
[0l + 2R (v, w) + [Jw||*.

O
Corollary 0.1 (The Parallelogram Law.). We have
[|v+wl|[* + |lv — w[|* = 2 (Jo]|* + ||w]|?) .
Proof. Look at it. O
Here is an absolutely fundamental consequence of the Parallelogram Law.
Theorem 0.1. Suppose V is complete with respect to || - || and C is a nonempty

closed convex subset of V. Then there is a unique point ¢ € C such that

lle]] < ||v]] whenever v € C.
Remark 0.1. Draw a picture.

Proof. Let
d=inf{||v]| : v € C}
and let
C={CnNB%r):d<r <o}
Note that C is a nonempty nested family of nonempty closed subsets of V.
Suppose C' € C, d < r < oo and v,w € C. Because C is convex we have
(v+w) € CNBY(R) so
1 1
Zl+wl? = 50+ w)|? 2 &,
Thus, by the Parallelogram Law,
1 2 1 2 2 1 2 2 2
Zlo=wl® = 3 (ol + 1wl ) = 7llo+w]> < 2 — .
It follows that
inf{diam C NB%(r):d <r < 0o} = 0.
By completeness there is a point ¢ € V such that
{c} =nC.
O

Corollary 0.2. Suppose U is a closed linear subspace of V and v € V. Then there
is a unique u € U such that

[lv —ul|| <|lv—1'|| whenever v’ € U.
Remark 0.2. Draw a picture.

Remark 0.3. We will show very shortly that any finite dimensional subspace of
V' is closed.



Proof. Let C' = v — U and note that C' is a nonempty closed convex subset of V.
(Of course —U = U since U is a linear subspace of U, but this representation of C
is more convenient for our purposes.) By virtue of the preceding Theorem there is
a unique u € U such that

[lv —u|| <|lv—14'|] whenever v € U.

Theorem 0.2 (The Cauchy-Schwartz Inequality.). Suppose v,w € V. Then
| (v, w)| < [Jv]|]w]]
with equality only if {v,w} is dependent.

Proof. If w = 0 the assertion holds trivially so let us suppose w # 0. For any ¢ € C
we have

0 < [Jo + cwl]* = [[o]]* + 2R (v, cw) + [lew||* = [[v]]* + 2R(c(v, w)) + |c|?||w][*.

Letting
_w)
[|w]|?
we find that
0< HUHQ__|<v7w)P
||l
with equality only if ||v + cw|| = 0 in which case v + cw =0 so v = —cw. O

Corollary 0.3. Suppose a and b are sequences of complex numbers. Then

S fanbal < (i |an|2> " (i |bn|2>1/2,

n=0 n=0 n=0

Proof. For any nonnegative integer N apply the Cauchy-Schwartz inequality with
(-,+) equal the standard inner product on CV,

v =(ag,...,ay) and w = (bo,...,bN)

and then let N — oo. O

Theorem 0.3 (The Triangle Inequality.). Suppose v,w € V. Then
|lv+w|| < [[v]] + ||w]|

with equality only if either v is a nonnegative multiple of w or w is a nonnegative
multiple of v.

Proof. Using the Cauchy-Schwartz Inequality we find that
o+ wl? = o]]* + 2R (v, w) + |[w]|* < |Joll* + 2[Jo[[[[wl] + [Jw|* = (o] + [[w]])*.

Suppose equality holds. In case v = 0 then v = Ow so suppose v # 0. Since
|(v,w)| > R(v,w) = ||v||||]w|| we infer from the Cauchy-Schwartz Inequality that
w = cv for some ¢ € C. Thus

1+ cllfoll = [[(T+ e)o)|| = [[o + cw|| = [[v]| + [few]] = (1 +[e})][v]]



from which we infer that
T+2Re+|cP=1+c>=(1+]|c))?> =1+2|c| + |

which implies that c is a nonnegative real number. (I

Definition 0.1. Suppose U is a linear subspace of V. We let
Ut ={veV:(uv)=0foraluecU}
and note that U~ is a linear subspace of V. It follows directly from (iv) that

Unu* = {0}.

Proposition 0.2. Suppose U is a linear subspace of V. Then
Ucutt

and U+ is closed.

Proof. The first assertion is an immediate consequence of the definition of U+. The
second follows because U+ is the intersection of the closed sets

{veV:(uv)=0}

corresponding to u € U; These sets are closed because V' 3 v — (u,v) is continuous
by virtue of the Cauchy-Schwartz Inequality. O

Orthogonal projections.
Henceforth U is closed linear subspace of V.

Definition 0.2. Keeping in mind the foregoing, we define
P:V—=U
by requiring that
[lv — Pv|| <|lv—'|| whenever v’ € U.

That is, Pv is the closest point in U to v. We call P orthogonal projection
of V onto U. Note that Pu = v whenever u € U. Thus

rmgP=U and PoP=P

Keeping in mind that U~ is a closed linear subspace of V we let
pt
be orthogonal projection of V onto U+.

Theorem 0.4. Suppose W is a linear subspace of V and
Q:V->W
is such that
[lw—Qv|| <|lv—w|| whenever v eV and we W.

Then W is closed and @ is orthogonal projection of V' onto W.
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Proof. Suppose w € clW and € > 0. Choose w € W such that || — w|| < e. Then
llw — Qul| < [|lw—w|| <e.

Owing to the arbitrariness of € we infer that ||Qw — w|| = 0 so w = QW € W and
cdw cw. O

Theorem 0.5. We have
u=Pv & v—u€U' wheneveruc U and v e V.
Proof. Suppose u € U and v € V. For each (t,u') € R x U let
Ftu') = (v =) + tu||?
and note that
ft,u) = |[v —ul|® + 2tR(v — u, o) + 2| [u/]|*.

Suppose u = Pv. Then f(0,u') < f(t,u’) whenever (¢,u') € R x U. Thus
v—u€eU
Suppose v — u € U+. Then

o —ul]? = £(0,u' —u) < f(1,u' —u) = ||jv—u||?
so u = Pv. O

Corollary 0.4. P is linear.

Proof. Suppose v € V and ¢ € C. Then cPv € U and cv—cPv = ¢(v—Pv) € U so
P(cv) = cPv. Suppose v1,v € V. then Pv;+Puy € U and (v +v2)—(Pv1+Pug) =
(v1 — Pvy) + (v — Puvg) € UL 50 P(vy + v2) = Py + Pus. O

Corollary 0.5. Suppose v € V. Then
(i) v = Pv+ Ptv and

(i) [[ol|? = ||Pv[[* + || P[>,

Proof. We have v — Pv € U+ by the preceding Theorem and
v—(v—Pv)=PvelUcU

so, again by the preceding Theorem only with U replaced by UL we find that
Pty =v — Puv. It follows that

[0][* = [|[Pv + Pol|* = [| Pol[* + 2R(Puv, P~o) + ||[PLo||* = [|Po]|* + || Po] .
O

Corollary 0.6. We have
Utt=u
and
(Pv,w) = (v, Pw) whenever v,w € V.
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Proof. Let P and P+ be orthogonal projection of V onto U and U™, respectively.
By the preceding Theorem with U replaced by U+ we find that orthogonal projec-
tion of V onto U++ carries v € V to v — Ptv = Pv. Thus U = U+,

Suppose v, w € V. Then

(Pv,w) = (Pv, Pw+ Ptw) = (Pv, Pw) = (Pv + P*v, Pw) = (v, Pw).
O

Definition 0.3. We say a subset A of V is orthonormal if whenever v, w € A we

have
1 ifv=uw;
(v,1) = 1 v =w;
0 ifv#w.

Exercise 0.1. Show that any orthonormal set is independent.

The Gram-Schmidt Process. Suppose i € V ~ U, U = {u+cii : ¢ € C} and

- Pl
Pv=Pv+ WPLQ whenever v € V.

Then U is closed and P is orthogonal projection on U.

Proof. Easy exercise for the reader. O

Remark 0.4. If U = {0} then P =0 so

PO =GR

[ V)

and P is orthogonal projection on the line {ci : ¢ € C}.

Corollary 0.7. Any finite dimensional subspace of V is closed and has an or-
thonormal basis.

Proof. Induct on the dimension of the subspace and use the Gram-Schmidt Process
to carry out the inductive step. O

Proposition 0.3. Suppose U is finite dimensional and B is an orthnormal basis
for U. Then

Py = Z(v,u)u and ||Pv||* = Z |(v,u)|*> whenever v € V.
ueB uEeB
Proof. Let

Lv = Z(v,u)u forveV.
u€B



Suppose v € V and @ € B. The

(v— Lv,a) = (v— Z(v, w)u, )

ueB
= (U,ﬁ) - Z(U,U)(u,ﬂ)
ueB
= (1}, ﬂ) - (v,ﬂ)

=0

which, as B is a basis for U, implies that v — Lv € UL; thus P = L.
Finally, if v € V we have

Lol = (3 (v, u)u, Y (v, @)a)

ueB u€B
= Z (v,u) (v, @) (u, @)
= (w0

ueB

Hilbert space.

Let X be a set and let
HX:{ueCX:Z|u|2<oo}.
X

Proposition 0.4. Suppose u,v € Hyx. Then
Z luv] < co.
X

Proof. Suppose F is a finite subset of X. The Cauchy-Schwartz Inequality implies
that
2
F F F X X

Definition 0.4. Keeping in mind the previous Proposition we let

(u,v) = Zu@ whenever u,v € Hx.
X

One easily verifies that (-,-) is a Hermitian inner product on Hx.

Definition 0.5. For each subset A of X let
H

Theorem 0.6. Hx is complete.
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Proof. Let C be a nonempty nested family of nonempty closed subsets of Hx such
that inf{diam C : C € C} = 0. For each C € C let

bo = sup{||v|| : v € C}.
By the triangle inequality there are B € [0, 00) and Cj € C such that
bc, < B.

Note that
bc <bgp whenever C € C and C C Cy.

For each © € X let C,, = cl{u(x) : u € C} for each C € C, note that
diam C, < diamC for each C € C,

and let
C, ={C,:CeC}.
For each x € X the family C, is a nonempty nested family of nonempty closed
subsets of C and inf{diamC, : C € C} = 0. Since C is complete there is one and
only v € CX such that

u(z) € NC, whenever z € X.

Suppose F' is a finite subset of X. Choose C € C such that C C Cy and
|F|diam C? < 1. Suppose v € C. We infer from the Triangle Inequality that

1/2 1/2 1/2
<Z|u2> < <Z|u—02> —|—<Z |v|2> < V/|F|max{diam C, : z € F}+||v||* < /|F| max{diam C,
F F F

It follows that

ue Hyx.
Suppose € > 0.
and
1/2 1/2 1/2
<Z|u—v|2> < <Z|u—v|2> +<Z|v|2> < V/|F|max{diam C,, : x € F}+||v||?
F F F

O



