The Gauss-Bonnet Theorem for Surfaces.

1. Frame fields. Let n be a positive integer and let T' be an open subset of some Euclidean space. Suppose
the column vector

u
U =
uy
is a smooth n-frame field on T by which we mean that each u;, i« = 1,...,n is a smooth R™-valued

function on T and that u; A - -- A u,, never vanishes. Let

0
be the n x n-matrix of smooth one forms on 7" determined by the requirement that
1) dU = §U;

0 is called the connection matrix of U. Applying exterior differentiation to (1) we find that
n

(2) do;; = —Z@i,k/\ekﬂ', k=1,...,n;
k=1

these equations are called the structure equations for 6.
Theorem. U is orthonormal if and only if 8 is skewsymmetric.!
Proof. Straighforward exercise for the reader. O
Suppose V is another n-frame field on T and let n be its connection matrix. Let g be the smooth
function with values in GL(R™) determined by the requirement that

3) VvV = 4U.
Applying d to (3) we obtain
ngU = nV = dV = (dg)U +,dU = (dg)U + ¢g0U;
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multiplying on the right by g7 we obtain

(4) n = (dg)g™" +g0g7".

Of particular interest to us will be the following
Theorem. Suppose n = 3, T is simply connected and uz = +v3. Then there is a smooth function
a: T — R such that

(5) Mo = do + 0172.
Proof. Because T is simply connected there exists a smooth function « : T'— R such that either

cosa sina 0
g = | —sina cosa O

0 0 +1

L This is the first fundamental principle of differential geometry. The second fundamental prin-
ciple of differential geometry is that dd = 0 which amounts to the equality of mixed partial derivatives.
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or this equation holds with its second column multiplied by —1. Since O(R?) is Abelian, we have gfg—! = 6;
moreover, a simple calculation yields
0 1
(dg)g~" = l ] da

-1 0

and (5) now follows from (4). O

2. Surfaces in R3. Suppose S € M3 and X : T — S is a local parameter for S. Suppose U is an
orthonormal 3-frame field which is adapted to S by which we mean that

(1) dX euz = 0.

Keeping in mind (1), we may define the smooth independent one forms w;, i = 1,2 on T by requiring that
(2) dX = wiug + wous.

Applying d to (2) we obtain the first structure equations

(3) dwi = 612 Awe, dws = 021 Awn

and the equation

(4) 031 ANwi+ 032 Awa = 0.

Letting the 2 x 2-matrix
b

of smooth functions on 7" be defined by requiring that
03,1 w1
=b
03,2 (€%)

(5) bt = b.

we see that (4) is equivalent to

This amounts to saying that the derivative of a smooth unit normal field to S induces a symmetric linear
transformation of the tangent space at each point of S. Let the smooth function

K:T—-R

be defined by requiring that
d91’2 = Kwi Aws.

we call K the Gauss curvature of X. keeping in mind 1(5) we find that if Y is another local parameter
for S and L is its Gauss curvature then K o X~! = L o Y~! on the intersection of the ranges of X and Y.
The structure equations 1(2) for § amount to the Gauss Curvature Equation or Theorem Egregium
(6) K = detb

and the Codazzi-Mainardi Equations

(7) d93’1 = —93’2 /‘\92’1, d93,2 = —93’1 A 01’2.



As an illustration of these ideas, suppose b equals some smooth function A times the identity which
amounts to 63 ; = Aw;, @ = 1,2. Applying the first Codazzi-Mainardi equation and the first equation of (3)
we find that

d)\/\wl +)\dw1 = d()\wl) = d0371 = —03,2 /\0271 = _)\WQ /\92,1 = )\dwl

which implies that dA A w; = 0. Similarly, we find that d\ A wy = 0. But this forces dA = 0. Let us
now assume that T is connected. It follows that A is constant. If A = 0 then dus = 0 is constant so

d(X eu3z) = dX euz = 0 so the range of X lies in a plane. If A # 0 then d(‘g — X) =0s0 % — X =c for
1

some constant vector ¢ so | X —c| = 7 and X is spherical.
3. Geodesic curvature.

Let us retain the assumptions and notations of 2. Suppose C € M?B’ C is oriented and is connected,
C has finite length L and ¢lC' C rng X. Then there is one and only on positively oriented local parameter
¢ : (0,L) = C whose range equals C' and there is one and only one orthonormal 3 frame field V on (0, L)
such that vi = ¢/, vi x voa = (uy ouz) o X tocand vz =uz o X~ !oc. Let n be the connection form of V
and let
k:(0,L) = R,

the geodesic curvature of C in S, be determined by the requirement that 1,2 = xds where s is the
identity function of (0, L). We say C is geodesic in S if k = 0 which amounts ¢” being normal to S. Let

a:(0,L) >R
be the smooth function such that
vy = cosa(u; o X toc)+sina(uy o0 X toc).

Note that any two such functions differ by a constant and that o can be extended to a smooth function
whose domain contains the closure of (0, L); in particular

=1 =1
a_ SIJIB a(s) and oy SITIE a(s)

exist. From our earlier work we find that
M, = 01,2 oX loc + da.
It follows that
/ Kkds = / (Xtoc)#010+ay —a_.
(0,L) (0,L)

Now suppose R is an open subset of rng S whose closure is a compact subset of rng X and whose boundary
relative to rng X is the union of a finite set B and the union of a finite disjointed subfamily C of M?’3 each
of whose members is connected and has finite length. Suppose, in addition, that each member of B is a
member of exactly two of the sets {0C : C' € C}. For each b € B let

7 = length (S* N Tan(R,b).

Then we have the Gauss-Bonnet formula

[ iRl = 3 [ rodicl + ¥

cec beB

This is follows from the preceding and the fact that

/ dhys = / b1
X-1[R] 8X-1[R]

which is Stokes’ Theorem for a plane region with well behaved corners.
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