
1. Fourier series.

Definition 1.1. Given a real number P , we say a complex valued function f on R
is P -periodic if

f(x + P ) = f(x) for all x ∈ R.
We let

P
be the set of complex valued 2π-periodic functions f on R such that

1If ∈ Leb1 whenever I is a bounded interval.

(Replace Leb1 by Riem1 if Leb1 makes you nervous. A great deal of what follows
will still go through.) It follows from our previous work that P is a vector space
over C with respect to pointwise addition and scalar multiplication.

Here is a Corollary of Hölder’s Inequality.

Theorem 1.1. Suppose 1 ≤ p < q ≤ ∞. Then

||f ||p ≤ (2π)1/p−1/q||f ||q whenever f ∈ P.

In particular,
Pq ⊂ Pp.

Proof. If q = ∞ the inequality holds trivially (Why?) so suppose q < ∞. Let
p̃ = q/p and q̃ = p̃/(p̃− 1) so p̃ and q̃ are conjugate. From the Hölder’s Inequality
we infer that

||f ||pp = |||f |p1R||1 ≤ |||f |p||p̃||1R||q̃ = ||f ||pq(2π)1−p/q.
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Of particular interest is the case p = 2; we will frequently write

||f ||
for ||f ||2.
Proposition 1.1. For any f ∈ P1 and any a ∈ R we have

∫ π+a

−π+a

f(x) dx =
∫ π

−π

f(x) dx.

Exercise 1.1. Prove this Proposition. To start, show that if f is Riemann or
Lebesgue integrable on Rn then

I(τaf) = I(f) for a ∈ Rn

where I is either R or L, respectively. Here τa(x) = x + a for x ∈ Rn and τaf =
f ◦ (τa)−1 = f ◦ τ−a.

Definition 1.2. Suppose f, g ∈ P. We say f and g are complementary if fg ∈ P1

in which case we set

(f, g) =
∫ π

−π

f(x)g(x) dx.

If f ∈ Pp and g ∈ Pq for some p, q such that 1 ≤ p, q ≤ ∞ and p and q are conjugate
then f and g are complementary by virtue of Hölders Inequality.

1



2

In case p = 2 = q one easily verifies from the linearity of the integral that

(·, ·)
is a pseudo-Hermitian inner product on P2. The “pseudo” is necessary because

||f ||2 =
√

(f, f) = 0

only implies that {x ∈ R : f(x) 6= 0} is a set of measure zero and not that f = 0
which means, by definition that f(x) = 0 for all x ∈ R. (Note that if 0 < η < ∞
then

η2L1({x ∈ (−π, π] : |f(x)| ≥ η}) ≤
∫ π

−π

|f(x)|2 dx = ||f ||2.)

Definition 1.3. For each n ∈ Z we let

En(x) =
1√
2π

einx for x ∈ R;

evidently, En ∈ P∞.

1.1. Discussion and more definitions. Suppose A ∈ C ∼ {0}. Then d
dx

eAx

A =
eAx, x ∈ R. So if −∞ < a < b < ∞ we may use the Fundamental Theorem of
Calculus to obtain ∫ b

a

eAx dx =
eAx

A

∣∣∣
b

a
=

eAb − eAa

A
.

Thus

(Em, En) =

{
1 if m = n,
0 else.

That is, the set {En : n ∈ Z} is orthonormal with respect to (·, ·).
For each N ∈ N we let

TN

be the linear subspace of P∞ spanned by {En : |n| ≤ N} and we call the members
of TN trigonometric polynomials of degree N .

For each f ∈ P1 we define
f̂ : Z→ C,

the Fourier transform of f , by letting

f̂(n) = (f, En) for n ∈ Z.

One of our goals is to reconstruct f from its Fourier transform. As a first step in
this direction, for each nonnegative integer N and each f ∈ P1 we set

SNf =
∑

|n|≤N

(f, En)En =
∑

|n|≤N

f̂(n)En.

In particular, if f ∈ P2 then SNf is the orthogonal projection with respect to (·, ·)
of f onto TN .

Theorem 1.2. (Bessel’s Inequality.) For any f ∈ P1 we have
∑

n∈Z
|f̂(n)|2 ≤ ||f ||2.

Remark 1.1. Plancherel’s Theorem, which comes later, will give the opposite
inequality.
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Proof. This follows from our work on orthogonal projections.
Here is a recap of what we did there. Let N be a positive integer N . Keeping

in mind the orthogonality of the En’s we obtain

0 ≤ (f −
N∑

n=−N

f̂(n)En, f −
N∑

n=−N

f̂(n)En)

= (f, f)−
∑

|n|≤N

(f̂(n)En, f)−
∑

|n|≤N

(f, f̂(n)En) + (
∑

|n|≤N

f̂(n)En,
∑

|n|≤N

f̂(n)En)

= (f, f)−
∑

|n|≤N

f̂(n)(En, f)−
∑

|n|≤N

f̂(n)(f,En) +
∑

|n|≤N

f̂(n)f̂(n)En

= ||f ||2 −
∑

|n|≤N

|f̂(n)|2.

¤

The Fourier transform behaves nicely with respect to translations. Suppose
h ∈ R and f ∈ P. Recall that

τhf(x) = f(x− h) for x ∈ R.

By the by the translation invariance of integration and the first Proposition in this
section we have∫ π

−π

τh|f(x)| dx =
∫ π−h

−π−h

|f(x)| dx =
∫ π

−π

|f(x)| dx < ∞

so that τhf ∈ P. It follows that τhf ∈ Pp whenever 1 ≤ p ≤ ∞ and f ∈ Pp.

Proposition 1.2. We have
(i) τh is linear for each h ∈ R;
(ii) τh1 ◦ τh2 = τh1+h2 whenever h1, h2 ∈ R;
(iii) (τhf, τhg) = (f, g) whenever f, g ∈ P and h ∈ R.

Exercise 1.2. Prove this. It’s very straightforward.

Proposition 1.3. Suppose f ∈ P and h ∈ R. Then

τ̂hf(n) = e−inhf̂(n).

Exercise 1.3. Exercise.

Definition 1.4. Suppose f, g ∈ P1. For each x ∈ R we set

f ∗ g(x) =

{∫ π

−π
f(x− y)g(y) dy if

∫ π

−π
|f(x− y)g(y)| dy < ∞

0 else

and we call f ∗ g the convolution of f and g.

Recalling Tonelli’s Theorem we note that f ∗ g is a complex valued 2π-periodic
Lebesgue measurable function on R. Recalling Young’s Inequality we note that if
p, q, r ∈ [1,∞],

1
p

+
1
q

=
1
r

+ 1,

f ∈ Pp and g ∈ Pq then
||f ∗ g||r ≤ ||f ||p||g||q.



4

By Tonelli’s Theorem the first of the above cases holds for almost all x ∈ R.
Evidently, f ∗ g is 2π-periodic. Our previously developed theory of convolutions,
with natural modifications, applies here.

Proposition 1.4. Suppose f, g ∈ P. Then

f̂ ∗ g =
√

2πf̂ ĝ.

Exercise 1.4. Prove this.

Definition 1.5. For each nonnegative integer N we define the Dirichlet kernel
DN by letting

DN =
1√
2π

∑

|n|≤N

En.

Proposition 1.5. Let N be a no-negative integer. Then
(i)

DN (x) =
1
2π

{
sin(N+ 1

2 )x

sin x
2

if x 6= 0,

2N + 1 else;

(ii) DN is even and
∫ π

−π
DN (x) dx = 1 and

(iii) SNf = DN ∗ f for any f ∈ P1.

Proof. Suppose N and x ∈ R ∼ {0}. Then

DN (x) =
1
2π

N∑

n=−N

einx

=
1
2π

e−iNx 1− (eix)2N+1

1− eix

=
1
2π

e−i(N+ 1
2 )x − ei(N+ 1

2 )x

e−i x
2 − ei x

2

=
1
2π

sin(N + 1
2 )x

sin x
2

,

and it is evident that SN (0) = 2N+1
2π so (i) holds.

To prove (ii), note that
∫ π

−π

einx dx = 2π(En, E0) =

{
0 if n 6= 0,
2π else

for any integer n.
To prove (iii), suppose f ∈ P and x ∈ R and observe that

SNf(x) =
∑

|n|≤N

(f, En)En

=
1
2π

∑

|n|≤N

( ∫ π

−π

f(t)e−int dt

)
einx

=
∫ π

−π

(
1
2π

∑

|n|≤N

ein(x−t)

)
f(t) dt

= DN ∗ f(x).
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Lemma 1.1. (The Riemann Lebesgue Lemma.) Suppose f is Lebesgue inte-
grable on R. (This means that f ∈ Leb1.) Then

lim
t→∞

∫
f(x) sin tx dx = 0.

Proof. Suppose ∞ < a < b < ∞. Then
∫ b

a

sin tx dx =
cos tb− cos ta

t
→ 0 as t → ∞.

It follows that

(1)
∫

s(x) sin tx dx → 0 as t → ∞.

for any elementary function s such that {x ∈ R : s(x) 6= 0} is bounded..
Let η > 0. Choose an elementary function s such that {x ∈ R : s(x) 6= 0} is

bounded and ∫
|f − s| ≤ η;

(Remember this is practically the definition of what it means for f to be Lebesgue
integrable.) Then

∣∣∣∣
∫

f(x) sin tx dx

∣∣∣∣ =
∣∣∣∣
∫

[f(x)− s(x)] sin tx dx +
∫

s(x) sin tx dx

∣∣∣∣

≤
∫
|f(x)− s(x)| dx +

∣∣∣∣
∫

s(x) sin tx dx

∣∣∣∣

≤ η +
∣∣∣∣
∫

s(x) sin tx dx

∣∣∣∣ ;

for any t ∈ R. Now use (1) to complete the proof. ¤

Corollary 1.1. Suppose f ∈ P. Then

lim
|n|→∞

f̂(n) = 0.

Theorem 1.3. Suppose f ∈ P1, x ∈ R, L+, L− ∈ C and

(1) lim
δ↓0

( ∫

(x−δ,x)

∣∣∣f(t)− L−

t− x

∣∣∣ dt +
∫

(x,x+δ)

∣∣∣f(t)− L+

t− x

∣∣∣ dt

)
= 0.

Then

lim
N↑∞

SNf(x) =
L− + L+

2
.

Remark 1.2. (Very important) For example, if f is differentiable at x the
hypothesis holds with L± = f(x).

Proof. Part One. Suppose x = 0. Set K− = [−π, 0) and K+ = (0, π). For each
positive integer N let

g±N (t) = DN (−t)(f(t)− L±) for t ∈ K±.
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Recall that DN is even and
∫ π

−π
DN = 1; this implies

∫

K−
DN =

1
2

=
∫

K+
DN .

. Thus

SNf(0)− L− + L+

2

=
∫ π

−π

DN (−t)f(t) dt− L−
∫ 0

−π

DN (−t) dt− L+

∫ π

0

DN (−t) dt

=
∫

K−
g−N (t) dt +

∫

K+
g+

N (t) dt.

For any δ ∈ (0, π) we set

J±δ = K± ∩ (−δ, δ), I±δ = K± ∼ J±δ .

Let η > 0. Since

|g±N (t)| ≤
∣∣∣∣∣
f(t)− L±

−t

∣∣∣∣∣

∣∣∣∣∣
−t

sin −t
2

∣∣∣∣∣
for any t ∈ (−π, π) and any N we may choose δ ∈ (0, π) such that

∫

J±δ

|g±N | ≤ η.

Moreover,

I±δ 3 t 7→ f(t)− L±

sin −t
2

is Lebesgue integrable so, by the Riemann-Lebesgue Lemma,

lim
N↑∞

∫

I±δ

g±N = 0;

the Theorem follows in case x = 0.
Part Two. From Part One we infer that

lim
N→∞

SN (τ−xf)(0) =
L− + L+

2
.

But

SN (τ−xf)(0) =
1√
2π

∑

|n|≤N

τ̂−xf(n) =
1√
2π

∑

|n|≤N

f̂(n)einx = SNf(x).

¤

Proposition 1.6. Suppose m is a positive integer, f ∈ P and f is m times con-
tinuously differentiable. Then

f̂ (m)(n) = (in)mf̂(n).
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Proof. We use integration by parts to obtain
√

2πf̂ ′(n) =
∫ π

−π

f ′(x) e−inx dx

=
∫ π

−π

e−inx d(f(x))

= e−inx f(x)|x=π
x=−π −

∫ π

−π

f(x) d(e−inx)

= in

∫ π

−π

f(x) e−inx dx

=
√

2π in f̂(n).

Thus the Proposition holds if m = 1 and follows for arbitrary m by induction. ¤

Corollary 1.2. Suppose m is a positive integer, f ∈ P and f is m times continu-
ously differentiable, N is a nonnegative integer and x ∈ R. Then

|f(x)− SNf(x)| ≤ 1√
π

1

N
2m−1

2

||f (m)||.

Proof. Note that

∑

n∈Z
|anbn| ≤

(∑

n∈Z
|an|2

)1/2 (∑

n∈Z
|bn|2

)1/2

whenever a and b are complex valued functions on Z; that
∞∑

n=N+1

1
n2m

≤
∫ ∞

N

dx

x2m
=

1
N2m−1

;

and that, by Bessel’s Inequality,
∑

|n|>N

|f̂ (m)(n)|2 ≤ ||f (m)||2.

Let O ∈ N and x ∈ R. From the Fourier Inversion Formula we have that

f(x)− SNf(x) = lim
O→∞

∑

N<n≤O

f̂(n)En(x).

Thus if O ∈ N and N < O we have∣∣∣∣∣∣
∑

N<|n|<O

f̂(n)En(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

N<|n|<O

1
(in)m

f̂ (m)(n)En(x)

∣∣∣∣∣∣

≤ 1√
2π


 ∑

N<|n|<O

1
n2m




1/2 
 ∑

|n|>N

|f̂ (m)(n)|2



1/2

≤ 1√
2π

√
2

N2m−1
||f (m)||.

¤
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1.2. Approximate identities. Let φ be a smooth nonnegative real valued func-
tion on R which has integral one and which is supported in [−1, 1]. For each ε > 0
let φε(x) = 1

ε φ(x
ε ) for x ∈ R.

Theorem 1.4. Suppose f ∈ P2. Then

lim
N↑∞

||f − SNf || = 0.

Proof. Let η > 0. Choose ε > 0 such that if g = φε ∗ f then ||f − g|| < η. Then for
any nonnegative integer N we have

||f − SNf || ≤ ||f − g||+ ||SN (f − g)||+ ||SNg − g|| ≤ 2η + ||SNg − g||
because ||SN (f − g)|| ≤ ||f − g|| by Bessel’s Inequality. But ||SNg − g|| → 0 as
N ↑ ∞ because, by the previous Theorem, SNg converges uniformly to g as N ↑ ∞
since g is smooth. ¤

Corollary 1.3. (Parseval’s?) Theorem.) If f ∈ P2 then

||f || =

(∑

n∈Z
|f̂(n)|2

)1/2

.

Proof. This follows from the preceding Corollary and the Pythagorean identity

||f ||2 = ||SNf ||2 + ||SNf − f ||2.
¤

Corollary 1.4.
∞∑

n=1

1
n2

=
π2

6
.

Proof. Apply Parseval’s Theorem to that member f of P such that f(x) = x for
x ∈ [−π, π). ¤

Corollary 1.5. Suppose f ∈ P and f̂ = 0. Then f equals zero almost everywhere.

Proof. We have φ̂ε ∗ f = 0 for any ε > 0 so, as φε ∗ f is smooth, φε ∗ f = 0 by the
previous Theorem. Since ||f − φε ∗ f ||1 → 0 as ε ↓ 0 we infer that f = 0. ¤

Corollary 1.6. Suppose f ∈ P. Then

||f ||2 =
∑

n∈Z
|f̂(n)|2.

Proof. In view of Bessel’s Inequality and the foregoing we need to show that if the
right hand side is finite so is the left hand side, so suppose the right hand side is
finite. Now φ̂ε ∗ f = φ̂εf̂ and |φ̂ε| ≤ 1 so ||φε ∗ f || is bounded independently of ε by
Plancherel’s Theorem. Do you know what to do now? ¤

Definition 1.6. (The Fejér kernel.) For each nonnegative integer N let

FN =
1

N + 1

N∑
n=0

DN .
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Proposition 1.7.

FN (x) =





(
sin( N+1

2 )x

sin x
2

)2

if x 6= 0,

N + 1 else.

Proof.
N∑

n=0

∑

|m|≤n

einx =
1

1− eix

N∑
n=0

e−inx − ei(n+1)x

=
1

1− eix

[1− e−i(N+1)x

1− e−ix
− eix1− ei(N+1)xover1− eix

]

=
1

1− eix

[ (1− eix)(1− e−i(N+1)x)− (1− e−ix)eix(1− ei(N+1)x)
(1− e−ix)(1− eix)

]

=
(1− e−i(N+1)x) + (1− ei(N+1)x)

(1− e−ix)(1− eix)

=

(
ei( N+1

2 )x − e−i( N+1
2 )x

)2

(
ei x

2 − e−
x
2

)2

=
( sin(N+1

2 )x
sin x

2

)2

.

¤
Theorem 1.5. Suppose f ∈ P and f is continuous. Then FN ∗ f converges
uniformly to f as N →∞.

Proof. Exercise for the reader. ¤
Theorem 1.6. The Weierstrass Approximation Theorem. Polynomial func-
tions are uniformly dense in the continuous functions on a compact rectangle.

Proof. Exercise for the reader. ¤


