Differential Forms.

Suppose U is an open subset of \mathbf{R}^n .

Definition. For each nonnegative integer p we let

 $\mathcal{A}^p(U)$

be the set of smooth maps

$$\varphi: U \to \bigwedge^p \mathbf{R}^n.$$

Note that $\mathcal{A}^p(U)$ is a vector space in a natural way. Whenever f is a smooth real valued function on U and $\varphi \in \mathcal{A}^p(U)$ we define $f\varphi$ in $\mathcal{A}^p(U)$ by setting $f\varphi(x) = f(x)\varphi(x)$ for x in U.

Proposition. There is one and only one bilinear map from

$$\mathbf{W}: \mathbf{L}(\bigwedge^{1} \mathbf{R}^{n}, \bigwedge^{p} \mathbf{R}^{n}) \to \bigwedge^{p+1} \mathbf{R}^{n}$$

such that

$$\mathbf{W}(\omega\varphi) = \omega \wedge \varphi \quad \text{whenever } (\omega,\varphi) \in \bigwedge^{1} \mathbf{R}^{n} \times \bigwedge^{p} \mathbf{R}^{n}$$

Moreover, if $\Phi \in \mathbf{L}(\bigwedge^1 \mathbf{R}^n, \bigwedge^p \mathbf{R}^n)$ then

$$\mathbf{W}(\Phi) \,=\, \sum_{i=1}^n \mathbf{v}^i \wedge \Phi(\mathbf{v}_i)$$

whenever $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is an ordered basis for \mathbf{R}^n and $\mathbf{v}^1, \ldots, \mathbf{v}^n$ is the corresponding ordered basis for $\bigwedge^1 \mathbf{R}^n$. **Proof.** Straightforward exercise for the reader. \Box

Definition. Exterior Differentiation. We define

$$d: \mathcal{A}^p(U) \to \mathcal{A}^{p+1}(U)$$

on φ in $\mathcal{A}^p(U)$ by letting

$$d\varphi(x) = \mathbf{W}(\partial\varphi(\mathbf{x})) = \sum_{i=1}^{n} \mathbf{e}^{i} \wedge \partial_{i}\varphi(x) \text{ for } x \text{ in } U.$$

One frequently writes

$$d\varphi$$
 instead of $d(\varphi)$.

Theorem. We have

- (1) $d(c\varphi) = c d\varphi$ whenever $c \in \mathbf{R}$ and $\varphi \in \mathcal{A}^p(U)$;
- (2) $d(\varphi + \psi) = d\varphi + d\psi$ whenever $\varphi, \psi \in \mathcal{A}^p(U)$;
- (3) $df = \partial f$ whenever f is a smooth function on U;
- (4) $d(\varphi \wedge \psi) = d\varphi \wedge \psi + (-1)^p \varphi \wedge d\psi$ whenever $\varphi \in \mathcal{A}^p(U)$ and $\psi \in \mathcal{A}^q(U)$;
- (5) $d(d\varphi) = \mathbf{0}$ whenever $\varphi \in \mathcal{A}^p(U)$.

Proof. The first three statements are trivial.

Let φ , ψ be as in (4). Then

$$d(\varphi \wedge \psi) = \sum_{i=1}^{n} \mathbf{e}^{i} \wedge \partial_{i}(\varphi \wedge \psi)$$

=
$$\sum_{i=1}^{n} \mathbf{e}^{i} \wedge (\partial_{i}\varphi \wedge \psi + \varphi \wedge \partial_{i}\psi)$$

=
$$(\sum_{i=1}^{n} \mathbf{e}^{i} \wedge \partial_{i}\varphi) \wedge \psi) + (-1)^{p}\varphi \wedge (\sum_{i=1}^{n} \mathbf{e}^{i} \wedge \partial_{i} \wedge \psi)$$

=
$$d\varphi \wedge \psi + (-1)^{p}\varphi \wedge d\psi.$$

Let φ be as in (5). Then

$$d(d\varphi) = \sum_{i=1}^{n} \mathbf{e}^{i} \wedge \partial_{i} \left(\sum_{j=1}^{n} \mathbf{e}^{j} \wedge \partial_{j}\varphi\right)$$
$$= \sum_{i,j=1}^{n} \mathbf{e}^{i} \wedge \mathbf{e}^{j} \wedge \partial_{i}\partial_{j}\varphi$$
$$= \mathbf{0}$$

because $\partial_i \partial_j \varphi = \partial_j \partial_i \varphi$ and $\mathbf{e}^i \wedge \mathbf{e}^j = -\mathbf{e}^j \wedge \mathbf{e}^i$ whenever $i, j = 1, \dots, n$. \Box

Pullbacks.

Suppose V is an open subset of some Euclidean space and $F: U \to V$ is smooth. For each nonegative integer p we define

$$F^{\#}: \mathcal{A}^p(V) \to \mathcal{A}^p(U)$$

at $\varphi \in \mathcal{A}^p(V)$ by setting

$$F^{\#}\varphi(x) = \bigwedge^{p} \partial F(x)(\varphi(F(x)))$$
 whenever $x \in U$.

One readily verifies that

- (1) $F^{\#}\varphi = \varphi \circ F$ if p = 0;
- (2) $F^{\#}(c \varphi) = c F^{\#} \varphi$ whenever $c \in \mathbf{R}$ and $\varphi \in \mathcal{A}^{p}(V)$;
- (3) $F^{\#}(\varphi + \psi) = F^{\#}\varphi + F^{\#}\psi$ whenever $\varphi, \psi \in \mathcal{A}^{p}(V);$
- (4) $F^{\#}(\varphi \wedge \psi) = F^{\#}\varphi \wedge F^{\#}\psi$ whenever $\varphi \in \mathcal{A}^{p}(V)$ and $\psi \in \mathcal{A}^{q}(V)$;

Suppose W is an open subset of some Euclidean space and $G:V\to W$ is smooth. Using the Chain Rule one finds that

(5) $(G \circ F)^{\#} \varphi = F^{\#}(G^{\#} \varphi)$ whenever $\varphi \in \mathcal{A}^{p}(W)$.

Theorem. Suppose V is an open subset of some Euclidean space and $F: U \to V$ is smooth. For each nonegative integer p we have

 $d(F^{\#}\varphi) = F^{\#}(d\varphi)$ whenever $\varphi \in \mathcal{A}^p(V)$.

Proof. Note first that if f is a smooth real valued function on V then

$$d(F^{\#}f) = d(f \circ F) = \partial(f \circ F) = F^{\#}(df)$$

by the Chain Rule.

Suppose $\varphi = g \, df_1 \wedge \cdots \wedge df_p$ where g, f_1, \ldots, f_p are smooth real valued functions on V. Then

$$d(F^{\#}(df_i)) = d(d(F^{\#}f_i)) = 0 \text{ for } i = 1, \dots, p$$

 \mathbf{SO}

$$d(F^{\#}\varphi) = d(F^{\#}g F^{\#}(df_1) \wedge \dots \wedge F^{\#}(df_p))$$

= $d(F^{\#}g) \wedge F^{\#}(df_1) \wedge \dots \wedge F^{\#}(df_p)$
= $F^{\#}(dg) \wedge F^{\#}(df_1) \wedge \dots \wedge F^{\#}(df_p)$
= $F^{\#}(dg \wedge df_1 \wedge \dots \wedge df_p)$
= $F^{\#}(\varphi).$

Since any member of $\mathcal{A}^p(V)$ is a sum of forms of this type, the Theorem follows from the additivity of d and $F^{\#}$. \Box