Vector fields and divergence.

Let U be an open subset of \mathbf{R}^{n}.
Definition. We let

$$
\mathcal{F}(U)
$$

be the algebra of smooth real valued functions on U and we let

$$
\mathcal{X}(U)
$$

be the $\mathcal{F}(U)$ module of smooth \mathbf{R}^{n} valued functions on U. We call the members of $\mathcal{X}(U)$ (smooth) vector fields on U. We let

$$
\mathcal{F}_{c}(U) \quad \text { and } \quad \mathcal{X}_{c}(U)
$$

be the members of $\mathcal{F}(U)$ and $\mathcal{X}(U)$, respectively, whose support is a compact subset of U.
Theorem. Suppose $X \in \mathcal{X}(U)$ and ϕ is its flow. Then

$$
\left.\frac{d}{d t} \operatorname{det} \partial \phi_{t}(\mathbf{x})\right|_{t=0}=\operatorname{trace} \partial X(\mathbf{x}) \quad \text { for } \mathbf{x} \in U
$$

Proof. Exercise for the reader. Use the Chain Rule and the fact that

$$
\partial \boldsymbol{\operatorname { d e t }}\left(i_{\mathbf{R}^{n}}\right)=\text { trace }
$$

which we have already proved. To prove this last formula, observe that for any $H \in \mathbf{L}\left(\mathbf{R}^{n} ; \mathbf{R}^{n}\right)$ we have

$$
\frac{d}{d t} \operatorname{det} \mathbf{i}_{\mathbf{R}^{n}}+\left.\left.t H\right|_{t=0} \frac{d}{d t}\left(\mathbf{e}_{1}+t H\left(\mathbf{e}_{1}\right)\right) \wedge \cdots \wedge\left(\mathbf{e}_{n}+t H\left(\mathbf{e}_{n}\right)\right)\right|_{t=0}
$$

which you can evaluate using Leibniz' Rule.
Definition. For each $X \in \mathcal{X}(U)$ we set

$$
\operatorname{div} X=\operatorname{trace} \partial X \in \mathcal{F}(U)
$$

Theorem. Suppose $X \in \mathcal{X}(U), \rho \in \mathcal{F}(U)$ and K is a compact subset of U. Then

$$
\left.\frac{d}{d t} \int_{\phi_{t}[K]} \rho\right|_{t=0}=\int_{K} \operatorname{div}(\rho X)
$$

Proof. Exercise for the reader. Use the Change of Variables Formula for Multiple Integrals and the previous Theorem.
Definition. We define the $\mathcal{F}(U)$-isomorphisms

$$
\beta: \mathcal{X}(U) \rightarrow \mathcal{A}^{1}(U) \quad \text { and } \quad \gamma: \mathcal{X}(U) \rightarrow \mathcal{A}^{n-1}(U)
$$

at $X \in \mathcal{X}(U)$ by setting

$$
\beta(X)(\mathbf{x})(\mathbf{u})=X(\mathbf{x}) \bullet \mathbf{u} \quad \text { whenever } \mathbf{x} \in U \text { and } \mathbf{u} \in \mathbf{R}^{n}
$$

and by setting

$$
\gamma(X)=\iota_{X}\left(\mathbf{e}^{1} \wedge \cdots \wedge \mathbf{e}^{n}\right)
$$

Proposition. Suppose $f \in \mathcal{F}(U)$. Then

$$
d f=\beta(\operatorname{grad} f)
$$

Proof. This is transparent.

Proposition. Suppose $X \in \mathcal{X}(U)$. Then

$$
d \gamma(X)=(\operatorname{div} X) \mathbf{e}^{1} \wedge \cdots \wedge \mathbf{e}^{n}
$$

Proof. Exercise for the reader.

The curl in \mathbf{R}^{2}.
Suppose $n=2$.
Definition. We define

$$
\begin{gathered}
\operatorname{curl}: \mathcal{X}(U) \rightarrow \mathcal{F}(U) \\
\operatorname{curl} X \mathbf{e}^{1} \wedge \mathbf{e}^{2}=d(\beta(X))
\end{gathered}
$$

at $X \in \mathcal{X}(U)$ by requiring that

Exercise. Show that

$$
\operatorname{curl} X=-\operatorname{div} X \quad \text { whenever } X \in \mathcal{X}(U)
$$

The curl in \mathbf{R}^{3}.

Suppose $n=3$.
Definition. We define

$$
\operatorname{curl}: \mathcal{X}(U) \rightarrow \mathcal{X}(U)
$$

at $X \in \mathcal{X}(U)$ by requiring that

$$
\iota_{\operatorname{curl} X}\left(\mathbf{e}^{1} \wedge \mathbf{e}^{2} \wedge \mathbf{e}^{3}\right)=d \beta(X) \quad \text { whenever } X \in \mathcal{X}(U)
$$

Exercise. Write a formula for the curl in terms of the standard components of $X \in \mathcal{X}(U)$.
Remark. It follows from $d d=0$ that curl grad $=0$ and that div curl $=0$.

