Vector fields and divergence.

Let U be an open subset of \mathbf{R}^n .

Definition. We let

 $\mathcal{F}(U)$

be the algebra of smooth real valued functions on U and we let

 $\mathcal{X}(U)$

be the $\mathcal{F}(U)$ module of smooth \mathbb{R}^n valued functions on U. We call the members of $\mathcal{X}(U)$ (smooth) vector fields on U. We let

$$\mathcal{F}_c(U)$$
 and $\mathcal{X}_c(U)$

be the members of $\mathcal{F}(U)$ and $\mathcal{X}(U)$, respectively, whose support is a compact subset of U. **Theorem.** Suppose $X \in \mathcal{X}(U)$ and ϕ is its flow. Then

$$\frac{d}{dt} \det \left. \partial \phi_t(\mathbf{x}) \right|_{t=0} = \operatorname{trace} \partial X(\mathbf{x}) \quad \text{for } \mathbf{x} \in U.$$

Proof. Exercise for the reader. Use the Chain Rule and the fact that

 $\partial \det(i_{\mathbf{R}^n}) = \mathbf{trace}$

which we have already proved. To prove this last formula, observe that for any $H \in \mathbf{L}(\mathbf{R}^n; \mathbf{R}^n)$ we have

$$\frac{d}{dt} \mathbf{det} \, \mathbf{i}_{\mathbf{R}^n} + tH \Big|_{t=0} \frac{d}{dt} (\mathbf{e}_1 + tH(\mathbf{e}_1)) \wedge \dots \wedge (\mathbf{e}_n + tH(\mathbf{e}_n)) \Big|_{t=0}$$

which you can evaluate using Leibniz' Rule. \Box Definition. For each $X \in \mathcal{X}(U)$ we set

$$\operatorname{div} X = \operatorname{trace} \partial X \in \mathcal{F}(U).$$

Theorem. Suppose $X \in \mathcal{X}(U)$, $\rho \in \mathcal{F}(U)$ and K is a compact subset of U. Then

$$\frac{d}{dt} \int_{\phi_t[K]} \rho \Big|_{t=0} = \int_K \operatorname{div} \left(\rho X \right).$$

Proof. Exercise for the reader. Use the Change of Variables Formula for Multiple Integrals and the previous Theorem. \Box

Definition. We define the $\mathcal{F}(U)$ -isomorphisms

$$\beta : \mathcal{X}(U) \to \mathcal{A}^{1}(U) \text{ and } \gamma : \mathcal{X}(U) \to \mathcal{A}^{n-1}(U)$$

at $X \in \mathcal{X}(U)$ by setting

$$\beta(X)(\mathbf{x})(\mathbf{u}) = X(\mathbf{x}) \bullet \mathbf{u}$$
 whenever $\mathbf{x} \in U$ and $\mathbf{u} \in \mathbf{R}^n$

and by setting

$$\gamma(X) = \iota_X(\mathbf{e}^1 \wedge \cdots \wedge \mathbf{e}^n).$$

Proposition. Suppose $f \in \mathcal{F}(U)$. Then

 $df = \beta(\operatorname{\mathbf{grad}} f).$

Proof. This is transparent. \Box

Proposition. Suppose $X \in \mathcal{X}(U)$. Then

$$d\gamma(X) = (\operatorname{\mathbf{div}} X) \mathbf{e}^1 \wedge \cdots \wedge \mathbf{e}^n.$$

Proof. Exercise for the reader. \Box

The curl in \mathbb{R}^2 .

Suppose n = 2.

Definition. We define

 $\operatorname{curl}: \mathcal{X}(U) \to \mathcal{F}(U)$

at $X \in \mathcal{X}(U)$ by requiring that

 $\operatorname{curl} X \operatorname{e}^1 \wedge \operatorname{e}^2 = d(\beta(X)).$

Exercise. Show that

 $\operatorname{curl} X = -\operatorname{div} X$ whenever $X \in \mathcal{X}(U)$.

The curl in \mathbb{R}^3 .

Suppose n = 3.

Definition. We define

 $\operatorname{curl}: \mathcal{X}(U) \to \mathcal{X}(U)$

at $X \in \mathcal{X}(U)$ by requiring that

$$\iota_{\operatorname{curl} X}(\mathbf{e}^1 \wedge \mathbf{e}^2 \wedge \mathbf{e}^3) = d\beta(X) \quad \text{whenever } X \in \mathcal{X}(U).$$

Exercise. Write a formula for the curl in terms of the standard components of $X \in \mathcal{X}(U)$. **Remark.** It follows from dd = 0 that **curl grad** = 0 and that **div curl** = 0.