1. More on the exponential function.

Proposition 1.1. We have
(i) $\exp (\bar{z})=\overline{\exp (z)}$ for $z \in \mathbf{C}$;
(ii) $|\exp (i y)|=1$ for $y \in \mathbf{R}$.

Proof. Exercise for the reader.

Definition 1.1. We define

$$
\cos : \mathbf{C} \rightarrow \mathbf{C} \quad \text { and } \quad \sin : \mathbf{C} \rightarrow \mathbf{C}
$$

by letting

$$
\cos (z)=\frac{\exp (i z)+\exp (-i z)}{2} \quad \text { and } \quad \sin (z)=\frac{\exp (i z)-\exp (-i z)}{2 i}
$$

whenever $z \in \mathbf{C}$. The reader may want to derive the addition laws for \cos and \sin from the addition law for the exponential map. Note that $\exp |\mathbf{R}, \cos | \mathbf{R}$ and $\sin \mid \mathbf{R}$ are all real valued. Note that cos is even and that sin is odd.

Theorem 1.1. We have
(i) $\exp ^{\prime}=\exp , \cos ^{\prime}=-\sin$, and $\sin ^{\prime}=\cos$;
(ii) $\cos (z)^{2}+\sin (z)^{2}=1$ whenever $z \in \mathbf{C}$.

Proof. We have already shown that $\exp ^{\prime}=\exp$. We leave verification of the remaining assertions in this Theorem as an exercise for the reader; one needs a very weak version of the Chain Rule.

Theorem 1.2. The following statements hold:
(i) $\exp \mid \mathbf{R}$ is increasing with range equal $(0, \infty)$;
(ii) there is a positive real number
such that

$$
\{z \in \mathbf{C}: \exp (z)=1\}=\{2 \pi n i: n \in \mathbf{Z}\}
$$

(iii) $\exp \mid \mathbf{R} i$ has range equal $\{z \in \mathbf{C}:|z|=1\}$;
(iv) $\mathbf{r n g} \exp =\mathbf{C} \sim\{0\}$.

Proof. Part One. If $x>0$ and $h>0$ then $\exp (x) \geq 1+x>1$ and $\exp (x+$ $h)=\exp (x) \exp (h) \geq \exp (x)(1+h)>\exp (x)$; Since $\exp (0)=1$ we conclude that $\exp \mid[0, \infty)$ is increasing with range a subset of $[1, \infty)$. Since $\exp (x)>1+x$ whenever $x>0$ we infer that $\lim _{x \rightarrow \infty} \exp (x)=\infty$. It follows from the Intermediate Value Theorem that the range of $\exp \mid[0, \infty)$ equals $[1, \infty)$. Since $\exp (-x) \exp (x)=$ $\exp (-x+x)=1$ for any $x \geq 0$ we infer that $\exp \mid(-\infty, 0]$ is increasing with range equal $(0,1]$. Thus (1) holds.

Let $T=\{t \in(0, \infty): \cos (t)=0\}$.
Part Two. I claim that T is nonempty.
Were T empty we could infer from the Intermediate Value Theorem and the fact that $\cos (0)=1$ that $\cos (t)>0$ whenever $t \in(0, \infty)$. Since $\sin ^{\prime}=\cos$ it would
follow from the Mean Value Theorem that $\sin \mid[0, \infty)$ is increasing. Let $\eta>0$. Since $\sin (0)=0$ we would have

$$
0<\sin (\eta)<\sin (t) \quad \text { whenever } \eta<t<\infty
$$

This would imply

$$
\frac{\cos (t)-\cos (\eta)}{t-\eta}<-\sin (\eta) \quad \text { whenever } \eta<t<\infty
$$

because, if $\eta<t<\infty$, the Mean Value Theorem in conjunction with $\cos ^{\prime}=-\sin$ provides $\xi \in(\eta, t)$ such that

$$
\frac{\cos (t)-\cos (\eta)}{t-\eta}=-\sin (\xi)
$$

But this forces $\cos (t) \rightarrow-\infty$ as $t \uparrow \infty$ which is incompatible with $|\cos (t)| \leq 1$ for $t \in \mathbf{R}$. Thus T is nonempty.

Part Two. Since cos is continuous and $\cos (0)=1, T$ is a closed set of positive real numbers. Let P be its least element. By the Mean Value Theorem, the Intermediate Value Theorem and the fact that $\sin ^{\prime}=\cos$ we find that $\sin \mid[0, P]$ is increasing with range $[0,1]$. By this fact, the Mean Value Theorem, the Intermediate Value Theorem and the fact that $\cos ^{\prime}=\sin$ we find that $\cos \mid[0, P]$ in decreasing with range $[0,1]$. It follows that that $\exp \mid[0, P] i$ is univalent with range $C=$ $\left\{u+i v: u \in[0,1], v \in[0,1]\right.$ and $\left.u^{2}+v^{2}=1\right\}$. Using the fundamental property of the exponential map we infer that $\exp \mid[P, 2 P] i$ is univalent with range $i C$; that $\exp \mid[2 P, 3 P] i$ is univalent with range $(-1) C$; and that $\exp \mid[3 P, 4 P] i$ is univalent with range $(-i) C$. (ii) now follows with $\pi=2 P$; (iii) follows from (ii) and the fundamental property of the exponential map; (iv) follows from (i), (iii) and the fundamental property of the exponential map.

