
1. Differentiation and Tangency.

Definition 1.1. Suppose X and Y are normed vector spaces, A is a subset of X
and f : A → Y .

For each v ∈ X we let

∂vf = {(a,w) ∈ intA× Y : w = lim
t→0

1

t
[f(a+ tv)− f(a)]}.

Owing to the uniqueness of limits we find that ∂vf is a function with values in
Y which we call the partial derivative of f with respect to v. In case X = Rn

and i ∈ {1, . . . , n} we let

∂if = ∂eif

and call this function the i-th partial derivative of f ; here ei is the i-th standard
basis vector in Rn.

Proposition 1.1. Suppose a ∈ intA. Then

(i) a ∈ dmn ∂0f(a) and ∂0f(a) = 0;
(ii) if v ∈ X, a ∈ dmn ∂vf and c ∈ R then a ∈ dmn ∂cvf and ∂cvf(a) =

c∂vf(a);
(iii) if X = R then a ∈ dmn ∂1f(a) if and only if f is f is differentiable at a in

which case f ′(a) = ∂1f(a).

Proof. (i) and (iii) are immediate. To prove (ii) we suppose v ∈ X, a ∈ dmn ∂vf ,c ∈
R ∼ {0} and ϵ > 0. Choose δ > 0 such that

|1
t
[f(a+ tv)− f(a)]− ∂vf(a)]| ≤

ϵ

|c|
whenever a+ tv ∈ A and 0 < |t| < ϵ. Then

| 1
u
[f(a+ ucv)− f(a)]− c∂vf(a)]| = |c|| 1

cu
[f(a+ ucv)− f(a)]− ∂vf(a)]| ≤ |c|ϵ = ϵ

whenever a+ ucv ∈ A and 0 < |u| < δ
|c| . □

We let

∂f = {(a, L) ∈ intA×B(X;Y ) : lim
x→a

|f(x)− f(a)− L(x− a)|
|x− a|

= 0}.

Owing to the uniqueness of limits we find that ∂f is a function with values in
B(X;Y ) which we call the differential of f . We say f is differentiable at a if
a ∈ dmn ∂f .

Proposition 1.2. Suppose f is diffenentiable at a. Then

(i) v ∈ X then a ∈ dmn ∂vf and ∂f(a)(v) = ∂vf(a) for any v ∈ X and
(ii) f is continuous at a.

Proof. (i) holds trivially if v = 0 so suppose v ∈ X ∼ {0}. For any t ∈ R ∼ {0} we
use the linearity of ∂f(a) to write

|1
t
[f(a+ tv)− f(a)]− ∂f(a)(v)| = |v| |f(a+ tv)− f(a)− ∂f(a)(tv)|

|tv|
which should make (i) evident.
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For any x ∈ A we have

|f(x)− f(a)| ≤ |f(x)− f(a)− ∂f(a)(x− a)|+ |∂f(a)(x− a)|

≤ |x− a|
(
|f(x)− f(a)− ∂f(a)(x− a)|

|x− a|

)
+ ||∂f(a)|||x− a|

which readily implies that

lim
x→a

f(x) = f(a)

which gives (ii). □

Proposition 1.3. Suppose f is locally constant. Then, for any a ∈ intA, f is
differentiable at a and ∂f(a) = 0.

Proof. This is trivial. □

Proposition 1.4. Suppose A = X and f ∈ B(X,Y ). Then, for any a ∈ X, f is
differentiable at a and

∂f(a) = f.

Proof. Suppose a, x ∈ X. Then

|f(x)− f(a)− f(x− a)|
|x− a|

= 0.

□

Example 1.1. Let f : R2 → R be such that

f(x, y) =

{
1 if y = x2,

x ̸= 0 else.

I claim that

∂(u,v)f(0, 0) = 0 whenever (u, v) ∈ R2.
To verify this, note that f(0, 0) = 0 and that if (u, v) ∈ R2, u2 + v2 = 1 and t ̸= 0
then

f(t(u, v)) =

{
0 if v = 0,

0 if v ̸= 0 and |t| < u2/|v|.

But f is not differentiable at (0, 0) because f is not continuous at (0, 0).

We will elaborate on this example later.

Example 1.2. Let f(x) = |x| for x ∈ Rn and suppose a ∈ Rn ∼ {0}. I claim that
f is differentiable at a and that

(1) ∂f(a)(v) =
v • a
|a|

, v ∈ Rn.

This will follow directly from the inequality

(2)
∣∣|x| − |a| − (x− a) • a

|a|
∣∣ ≤ 2

|x− a|2

|x|+ |a|
, x ∈ Rn.



3

Indeed, if (2) holds, given ϵ > 0 we let δ = ϵ
2|a| and find that if |x− a| < δ then

|f(x)− f(a)− |a|−1(x− a) • a|
|x− a|

≤ 2
|x− a|
|x|+ |a|

≤ 2δ

|a|
≤ ϵ.

To prove (2) we multiply it by |a|(|x|+ |a|) and obtain the equivalent inequality

(3)
∣∣|a|(|x|+ |a|)(|x| − |a|)− (|x|+ |a|)(x− a) • a

∣∣ ≤ 2|a||x− a|2, x ∈ Rn.

We have

|a|(|x|+ |a|)(|x| − |a|)− (|x|+ |a|)(x− a) • a
= |a|(x+ a) • (x− a)− (|x|+ |a|)(x− a) • a
=

(
|a|(x+ a)− (|x|+ |a|)a

)
• (x− a)

=
(
|a|x− |x|a

)
• (x− a).

Moreover,∣∣|a|x− |x|a
∣∣ = ∣∣|a|(x− a) + (|a| − |x|)a

∣∣ ≤ |a|
(
|x− a|+

∣∣|x| − |a|
∣∣) ≤ 2|a||x− a|,

establishing (3).

Definition 1.2. Suppose X and Y are metric spaces, A is a subset of X and
f : A → Y . We let

Lip(f) = sup{ρY (f(x), f(y))
ρX(x, y)

: x, y ∈ A and x ̸= a}

and call this extended real number the Lipschitz constant of f .

Lemma 1.1. Suppose γ : [0, 1] → Y ; γ is continuous; 0 ≤ N < ∞ and γ is
differentiable at each point of (0, 1) with

|γ′(t)| ≤ N whenever t ∈ (0, 1).

Then

(1) |γ(1)− γ(0)| ≤ N.

Proof. Suppose N < Ñ < ∞ and let

T = {t ∈ [0, 1] : |γ(s)− γ(0)| ≤ Ñs whenever 0 ≤ s ≤ t}.

Evidently, T is an interval containing 0, T ⊂ [0, 1] and T is closed since γ is
continuous. Let

(2) t1 = supT ∈ T.

Were it the case that t1 < 1, we could choose t2 ∈ (t1, 1] such that if t1 < t ≤ t2
then |γ(t) − γ(t1)| ≤ Ñ(t1 − t) because γ′(t1) exists and has norm not exceeding
N . But this implies that

|γ(s)| ≤ |γ(s)− γ(t1)|+ |γ(t1)| ≤ Ñ(s− t1) + Ñt1 = Ñs

whenever t1 < s ≤ t2. So t2 ∈ T which is incompatible with (2). So 1 = t1 ∈ T and

therefore |γ(1)−γ(0)| ≤ Ñ , which, owing to the arbitrariness of Ñ , implies (1). □
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Theorem 1.1. Suppose X and Y are normed vector space, A is a open subset of
X, f : A → Y . Suppose that ∂vf(a) exists for each (a, v) ∈ A×X and let

M = sup{|∂vf(a)| : a ∈ A, v ∈ X and |v| = 1}.

Then

M ≤ Lip(f)

with equality if A is convex.

Proof. Suppose a ∈ A. Choose δ > 0 such that {x ∈ X : |x− a| < δ} ⊂ A. For any
v ∈ X ∼ {0} and any real number t with |t| < δ/|v| we have

|t−1(f(a+ tv)− f(a))| ≤ t−1Lip(f)|(a+ tv)− a| = Lip(f).

Thus M ≤ Lip(f).
Now suppose A is convex, a, b ∈ A and M < ∞. Let γ(t) = f(a + t(b − a)) −

f(a), 0 ≤ t ≤ 1. Because ∂b−af(a+ t(b− a)) exists and has norm not exceeding M
for each t ∈ [0, 1] we find that γ is continuous on [0, 1] and differentiable on (0, 1)
with

|γ′(t)| = |∂b−af(a+ t(b− a))||b− a| ≤ M |b− a|, 0 < t < 1.

Suppose M < M̃ < ∞. The Theorem now follows from the previous Lemma. □

Example 1.3. In this example we will see that equality need not hold in the
previous Theorem if A is not convex. Let

γ(t) =
eit

t
∈ C, 1 < t < ∞;

let

L(t) =

∫ t

1

|γ′(τ)| dτ ;

let

A = {eisγ(t) : 1 < t < ∞ and |s| < π

2
} ⊂ C;

note that

(−π

2
,
π

2
)× (1,∞) ∋ (s, t) 7→ eisγ(t)

is univalent; and define f : A → R by requiring that

f(eisγ(t)) = L(t) if |s| < π and 1 < t < ∞.

Then A is open, f is differentiable at each point of A and

sup{||∂f(a
¯
)|| : a ∈ A} < ∞.

(Proof?) But, as L(t) ↑ ∞ and as eisγ(t) → 0 as t ↑ ∞ we find that Lip(f) = ∞.

Theorem 1.2. Suppose Y is a normed vector space, n is a positive integer, A is a
subset of Rn, f : A → Y and a ∈ intA. Suppose ∂if exists in a neighborhood of a
and is continuous at a for each j = 1, . . . , n. Then f is differentiable at a and

∂f(a) =

n∑
j=1

ej ∂jf(a).
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Proof. Let ϵ > 0. Choose δ > 0 such that if B = Πi=1(ai − δ, ai + δ) then B ⊂
A ∩n

i=1 dmn ∂if and such that if x ∈ B then

|∂jf(x)− ∂jf(a)| ≤ ϵ/
√
n whenever j = 1, . . . , n.

To prove the Theorem it will suffice to show that

(1) |f(x)− f(a)−
n∑

i=1

(xi − ai)∂if(a)| ≤ ϵ|x− a| whenever x ∈ B.

Let x ∈ B. For each j = 1, . . . , n we define γj : [0, 1] → A at t in [0, 1] by letting
γ1(t) = a+ t (x1−a1) e1 and requiring that γj(t) = γj−1(1)+ t (xj −aj) ej if j > 1.
For each j = 1, . . . , n we define gj : [0, 1] → Y at t in [0, 1] by letting

gj(t) = f(γj(t))− f(γj(0))− t (xj − aj) ∂jf(a).

For any j = 1, . . . , n we have g′j(t) = (xj − aj)(∂jf(γj(t)) − ∂jf(a)) for t in (0, 1)
which, by the previous Theorem, implies that

|gj(1)− gj(0)| ≤ |xj − aj | ϵ/
√
n.

Thus

|f(x)−f(a)−
n∑

j=1

(xj−aj) ∂jf(a)| = |
n∑

j=1

gj(1)−gj(0)| ≤ ϵ/
√
n

n∑
j=1

|xj−aj | ≤ ϵ |x−a|

so (1) holds. □

Theorem 1.3 (The Chain Rule.). Suppose X, Y and Z are normed vector spaces,
A is a subset of X, B is a subset of Y , f : A → B, g : B → Z, a ∈ A, f is
differentiable at a and g is differentiable at f(a). Then g ◦ f is differentiable at a
and

∂(g ◦ f)(a) = ∂g(f(a)) ◦ ∂f(a).

Proof. Suppose ϵ > 0. Let

ϵf = min{ ϵ

2(1 + ||∂g(f(a))||)
, 1} and let ϵg =

ϵ

2(1 + ||∂f(a)||)
.

Since f is differentiable at a we may choose δf > 0 such that

|f(x)− f(a)− ∂f(a)(x− a)| ≤ ϵf |x− a| whenever x ∈ A and |x− a| < δf .

This together with the triangle inequality implies

|f(x)− f(a)| ≤ (1 + ||∂f(a)||) |x− a| whenever x ∈ A and |x− a| < δf .

Since g is differentiable at f(a) we may choose δg > 0 such that

|g(y)−g(f(a))−∂g(f(a))(y−f(a))| ≤ ϵg |y−f(a)| whenever y ∈ B and |y − f(a)| < δg.

Let

δ = min{ δg
1 + ||∂f(a)||

, δf}.

If x ∈ A and |x− a| < δ then

|f(x)− f(a)| ≤ (1 + ||∂f(a)||) |x− a| ≤ δg
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so

|g(f(x))−g(f(a))− ∂g(f(a))(∂f(a)(x− a))|
≤ |g(f(x))− g(f(a))− ∂g(f(a))(f(x)− f(a))|+ |∂g(f(a))(f(x)− f(a)− ∂f(a)(x− a))|
≤ ϵg |f(x)− f(a)|+ ||∂g(f(a))|| ϵf |x− a|
≤ (ϵg (1 + ||∂f(a)||) + ϵf ||∂g(f(a))||) |x− a|
≤ ϵ |x− a|.

□

The following Theorem is a generalization of the Leibniz rule.

Theorem 1.4. Suppose Y1, Y2, and Z are normed vector spaces, µ ∈ L(Y1, Y2;Z)
and (b1, b2) ∈ Y1,×Y2. Then µ is differentiable at (b1, b2) and

∂µ(b1, b2)(v1, v2) = µ(v1, b2) + µ(b1, v2) whenever (v1, v2) ∈ Y1 × Y2.

Remark 1.1. Generalize this to Y1, Y2, . . . , Ym.

s

Proof. We set |(y1, y2)| = max{|y1|, |y2|} for (y1, y2) ∈ Y1 × Y2. Let ϵ > 0. Then

|µ(y1, y2)− µ(b1, b2)− [µ(y1 − b1, b2) + µ(b1, y2 − b2)]|
= |[µ(y1 − b1, y2) + µ(b1, y2,−b2)]− [µ(y1 − b1, b2) + µ(b1, y2 − b2)]|
= |µ(y1 − b1, y2 − b2) + µ(b1, y2 − b2)|
≤ ||µ||(|y1 − b1| |y2 − b2|+ |b1| |y2 − b2|)
≤ ||µ||(|b1|+ |(y1, y2)− (b1, b2)|)|(y1, y2)− (b1, b2)|
≤ ϵ |(y1, y2)− (b1, b2)|

if

|(y1, y2)− (b1, b2)| < δ = min{1, ϵ/(||µ||(1 + |b2|)}
where we have assumed µ ̸= 0 since Theorem holds trivially if µ = 0. □

Theorem 1.5. Suppose X is a normed vector space, A is a subset of X and a is a
point of A. Suppose Yi is a normed vector space, Ai is a subset of Yi, fi : A → Yi

and fi is differentiable at a for each i = 1, 2. Then (f1, f2) is differentiable at a and

∂(f1, f2)(a) = (∂f1(a), ∂f2(a)).

Proof. This follows immediately from the Definition. □

Example 1.4. Suppose A ⊂ Rn, f : A → R, g : A → Rm, a is an interior point
of A, and f and g are differentiable at a. Then fg is differentiable at a and

∂(fg)(a)(v) = f(a)∂g(a)(v) + ∂f(a)(v)g(a) whenever v ∈ Rn.

The point here is that fg = β ◦ (f, g) where β is the bilinear function whose value
at (c, v) ∈ R×Rn is cv.
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2. An example.

Let ϕ : R → R be a smooth nonzero function such that sptϕ ⊂ (0, 1). Let
c ∈ (0, 1) be such that ϕ′(c) ̸= 0.

Let a and b be decreasing sequences of positive real numbers such that limn→∞ bn =
0 and bn+1 < an for n ∈ N. Note that the family {[an, bn] : n ∈ N} is disjointed.
For each n ∈ N let mn be the midpoint of the interval (an, bn), let rn = bn −mn

and let xn = mn + crn. Let F : R → R be such that

F (x) =

{
xnrnϕ

(
x−mn

rn

)
if n ∈ N and x ∈ (an, bn),

0 if x ∈ R ∼ ∪∞
n=0(an, bn).

Then F is smooth on R ∼ {0}, of class C1 on R and F ′(0) = 0. Moreover,

lim
x→0

|F (x)

|x|2
= 0.

However,
F ′(an) = 0 for n ∈ N

and
F ′(xn)− F ′(0)

xn − 0
= ϕ′(c) for n ∈ N

so F ′ is not differentiable at 0.

3. A better example?

Suppose q > 0. Let

f(x) =

{
xq+2 sin(x−q) if x > 0,

0 if x ≤ 0.

f ′(x) = (q + 2)xq+1 sin(x−q)− qx cos(x−q)′ if x > 0.

Thus f is of class C1; f ′(x) = 0 if x < 0;

lim
x→0

f(x)

x2
= 0;

f ′(x)− f ′(0)

x− 0
=

f ′(x)

x
= (q + 1)xq+1 sin(x−q)− q cos(x−q) for x > 0;

it follows that f ′ is it not differentiable at 0.


