1. Differentiation and Tangency.

Definition 1.1. Suppose X and Y are normed vector spaces, A is a subset of X and $f: A \rightarrow Y$.

For each $v \in X$ we let

$$
\partial_{v} f=\left\{(a, w) \in \operatorname{int} A \times Y: w=\lim _{t \rightarrow 0} \frac{1}{t}[f(a+t v)-f(a)]\right\}
$$

Owing to the uniqueness of limits we find that $\partial_{v} f$ is a function with values in Y which we call the partial derivative of f with respect to v. In case $X=\mathbf{R}^{n}$ and $i \in\{1, \ldots, n\}$ we let

$$
\partial_{i} f=\partial_{\mathbf{e}_{i}} f
$$

and call this function the i-th partial derivative of f; here \mathbf{e}_{i} is the i-th standard basis vector in \mathbb{R}^{n}.

Proposition 1.1. Suppose $a \in \operatorname{int} A$. Then
(i) $a \in \operatorname{dmn} \partial_{0} f(a)$ and $\partial_{0} f(a)=0$;
(ii) if $v \in X, a \in \operatorname{dmn} \partial_{v} f$ and $c \in \mathbf{R}$ then $a \in \operatorname{dmn} \partial_{c v} f$ and $\partial_{c v} f(a)=$ $c \partial_{v} f(a)$
(iii) if $X=\mathbb{R}$ then $a \in \operatorname{dmn} \partial_{1} f(a)$ if and only if f is f is differentiable at a in which case $f^{\prime}(a)=\partial_{1} f(a)$.
Proof. (i) and (iii) are immediate. To prove (ii) we suppose $v \in X, a \in \operatorname{dmn} \partial_{v} f, c \in$ $\mathbf{R} \sim\{0\}$ and $\epsilon>0$. Choose $\delta>0$ such that

$$
\left.\left\lvert\, \frac{1}{t}[f(a+t v)-f(a)]-\partial_{v} f(a)\right.\right] \left\lvert\, \leq \frac{\epsilon}{|c|}\right.
$$

whenever $a+t v \in A$ and $0<|t|<\epsilon$. Then
$\left.\left.\left\lvert\, \frac{1}{u}[f(a+u c v)-f(a)]-c \partial_{v} f(a)\right.\right]|=|c|| \frac{1}{c u}[f(a+u c v)-f(a)]-\partial_{v} f(a)\right]|\leq|c| \epsilon=\epsilon$
whenever $a+u c v \in A$ and $0<|u|<\frac{\delta}{|c|}$.

We let

$$
\partial f=\left\{(a, L) \in \operatorname{int} A \times \mathbf{B}(X ; Y): \lim _{x \rightarrow a} \frac{|f(x)-f(a)-L(x-a)|}{|x-a|}=0\right\}
$$

Owing to the uniqueness of limits we find that ∂f is a function with values in $\mathbf{B}(X ; Y)$ which we call the differential of f. We say f is differentiable at a if $a \in \operatorname{dmn} \partial f$.
Proposition 1.2. Suppose f is diffenentiable at a. Then
(i) $v \in X$ then $a \in \operatorname{dmn} \partial_{v} f$ and $\partial f(a)(v)=\partial_{v} f(a)$ for any $v \in X$ and
(ii) f is continuous at a.

Proof. (i) holds trivially if $v=0$ so suppose $v \in X \sim\{0\}$. For any $t \in \mathbb{R} \sim\{0\}$ we use the linearity of $\partial f(a)$ to write

$$
\left|\frac{1}{t}[f(a+t v)-f(a)]-\partial f(a)(v)\right|=|v| \frac{|f(a+t v)-f(a)-\partial f(a)(t v)|}{|t v|}
$$

which should make (i) evident.

For any $x \in A$ we have

$$
\begin{aligned}
|f(x)-f(a)| & \leq|f(x)-f(a)-\partial f(a)(x-a)|+|\partial f(a)(x-a)| \\
& \leq|x-a|\left(\frac{|f(x)-f(a)-\partial f(a)(x-a)|}{|x-a|}\right)+||\partial f(a)|||x-a|
\end{aligned}
$$

which readily implies that

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

which gives (ii).

Proposition 1.3. Suppose f is locally constant. Then, for any $a \in \operatorname{int} A, f$ is differentiable at a and $\partial f(a)=0$.

Proof. This is trivial.

Proposition 1.4. Suppose $A=X$ and $f \in \mathbf{B}(X, Y)$. Then, for any $a \in X, f$ is differentiable at a and

$$
\partial f(a)=f
$$

Proof. Suppose $a, x \in X$. Then

$$
\frac{|f(x)-f(a)-f(x-a)|}{|x-a|}=0
$$

Example 1.1. Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be such that

$$
f(x, y)= \begin{cases}1 & \text { if } y=x^{2} \\ x \neq 0 & \text { else }\end{cases}
$$

I claim that

$$
\partial_{(u, v)} f(0,0)=0 \text { whenever }(u, v) \in \mathbb{R} 2
$$

To verify this, note that $f(0,0)=0$ and that if $(u, v) \in \mathbf{R}^{2}, u^{2}+v^{2}=1$ and $t \neq 0$ then

$$
f(t(u, v))= \begin{cases}0 & \text { if } v=0 \\ 0 & \text { if } v \neq 0 \text { and }|t|<u^{2} /|v|\end{cases}
$$

But f is not differentiable at $(0,0)$ because f is not continuous at $(0,0)$.
We will elaborate on this example later.
Example 1.2. Let $f(x)=|x|$ for $x \in \mathbf{R}^{n}$ and suppose $a \in \mathbf{R}^{n} \sim\{0\}$. I claim that f is differentiable at a and that

$$
\begin{equation*}
\partial f(a)(v)=\frac{v \bullet a}{|a|}, \quad v \in \mathbf{R}^{n} \tag{1}
\end{equation*}
$$

This will follow directly from the inequality

$$
\begin{equation*}
\left||x|-|a|-\frac{(x-a) \bullet a}{|a|}\right| \leq 2 \frac{|x-a|^{2}}{|x|+|a|}, \quad x \in \mathbf{R}^{n} \tag{2}
\end{equation*}
$$

Indeed, if (2) holds, given $\epsilon>0$ we let $\delta=\frac{\epsilon}{2|a|}$ and find that if $|x-a|<\delta$ then

$$
\frac{\left|f(x)-f(a)-|a|^{-1}(x-a) \bullet a\right|}{|x-a|} \leq 2 \frac{|x-a|}{|x|+|a|} \leq \frac{2 \delta}{|a|} \leq \epsilon .
$$

To prove (2) we multiply it by $|a|(|x|+|a|)$ and obtain the equivalent inequality

$$
\begin{equation*}
||a|(|x|+|a|)(|x|-|a|)-(|x|+|a|)(x-a) \bullet a| \leq 2|a||x-a|^{2}, \quad x \in \mathbf{R}^{n} . \tag{3}
\end{equation*}
$$

We have

$$
\begin{aligned}
|a|(|x|+|a|) & (|x|-|a|)-(|x|+|a|)(x-a) \bullet a \\
& =|a|(x+a) \bullet(x-a)-(|x|+|a|)(x-a) \bullet a \\
& =(|a|(x+a)-(|x|+|a|) a) \bullet(x-a) \\
& =(|a| x-|x| a) \bullet(x-a) .
\end{aligned}
$$

Moreover,

$$
||a| x-|x| a|=||a|(x-a)+(|a|-|x|) a| \leq|a|(|x-a|+||x|-|a||) \leq 2|a||x-a|
$$

establishing (3).

Definition 1.2. Suppose X and Y are metric spaces, A is a subset of X and $f: A \rightarrow Y$. We let

$$
\operatorname{Lip}(f)=\sup \left\{\frac{\rho_{Y}(f(x), f(y))}{\rho_{X}(x, y)}: x, y \in A \text { and } x \neq a\right\}
$$

and call this extended real number the Lipschitz constant of f.
Lemma 1.1. Suppose $\gamma:[0,1] \rightarrow Y ; \gamma$ is continuous; $0 \leq N<\infty$ and γ is differentiable at each point of $(0,1)$ with

$$
\left|\gamma^{\prime}(t)\right| \leq N \quad \text { whenever } t \in(0,1)
$$

Then

$$
\begin{equation*}
|\gamma(1)-\gamma(0)| \leq N \tag{1}
\end{equation*}
$$

Proof. Suppose $N<\tilde{N}<\infty$ and let

$$
T=\{t \in[0,1]:|\gamma(s)-\gamma(0)| \leq \tilde{N} s \text { whenever } 0 \leq s \leq t\}
$$

Evidently, T is an interval containing $0, T \subset[0,1]$ and T is closed since γ is continuous. Let

$$
\begin{equation*}
t_{1}=\sup T \in T \tag{2}
\end{equation*}
$$

Were it the case that $t_{1}<1$, we could choose $t_{2} \in\left(t_{1}, 1\right]$ such that if $t_{1}<t \leq t_{2}$ then $\left|\gamma(t)-\gamma\left(t_{1}\right)\right| \leq \tilde{N}\left(t_{1}-t\right)$ because $\gamma^{\prime}\left(t_{1}\right)$ exists and has norm not exceeding N. But this implies that

$$
|\gamma(s)| \leq\left|\gamma(s)-\gamma\left(t_{1}\right)\right|+\left|\gamma\left(t_{1}\right)\right| \leq \tilde{N}\left(s-t_{1}\right)+\tilde{N} t_{1}=\tilde{N} s
$$

whenever $t_{1}<s \leq t_{2}$. So $t_{2} \in T$ which is incompatible with (2). So $1=t_{1} \in T$ and therefore $|\gamma(1)-\gamma(0)| \leq \tilde{N}$, which, owing to the arbitrariness of \tilde{N}, implies (1).

4

Theorem 1.1. Suppose X and Y are normed vector space, A is a open subset of $X, f: A \rightarrow Y$. Suppose that $\partial_{v} f(a)$ exists for each $(a, v) \in A \times X$ and let

$$
M=\sup \left\{\left|\partial_{v} f(a)\right|: a \in A, v \in X \text { and }|v|=1\right\}
$$

Then

$$
M \leq \mathbf{L i p}(f)
$$

with equality if A is convex.
Proof. Suppose $a \in A$. Choose $\delta>0$ such that $\{x \in X:|x-a|<\delta\} \subset A$. For any $v \in X \sim\{0\}$ and any real number t with $|t|<\delta /|v|$ we have

$$
\left|t^{-1}(f(a+t v)-f(a))\right| \leq t^{-1} \mathbf{L i p}(f)|(a+t v)-a|=\mathbf{L i p}(f)
$$

Thus $M \leq \operatorname{Lip}(f)$.
Now suppose A is convex, $a, b \in A$ and $M<\infty$. Let $\gamma(t)=f(a+t(b-a))-$ $f(a), 0 \leq t \leq 1$. Because $\partial_{b-a} f(a+t(b-a))$ exists and has norm not exceeding M for each $t \in[0,1]$ we find that γ is continuous on $[0,1]$ and differentiable on $(0,1)$ with

$$
\left|\gamma^{\prime}(t)\right|=\left|\partial_{b-a} f(a+t(b-a))\right||b-a| \leq M|b-a|, 0<t<1
$$

Suppose $M<\tilde{M}<\infty$. The Theorem now follows from the previous Lemma.

Example 1.3. In this example we will see that equality need not hold in the previous Theorem if A is not convex. Let

$$
\gamma(t)=\frac{e^{i t}}{t} \in \mathbf{C}, \quad 1<t<\infty
$$

let

$$
L(t)=\int_{1}^{t}\left|\gamma^{\prime}(\tau)\right| d \tau
$$

let

$$
A=\left\{e^{i s} \gamma(t): 1<t<\infty \text { and }|s|<\frac{\pi}{2}\right\} \subset \mathbf{C}
$$

note that

$$
\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(1, \infty) \ni(s, t) \mapsto e^{i s} \gamma(t)
$$

is univalent; and define $f: A \rightarrow \mathbf{R}$ by requiring that

$$
f\left(e^{i s} \gamma(t)\right)=L(t) \quad \text { if }|s|<\pi \text { and } 1<t<\infty
$$

Then A is open, f is differentiable at each point of A and

$$
\sup \{\|\partial f(\underline{a})\|: a \in A\}<\infty
$$

(Proof?) But, as $L(t) \uparrow \infty$ and as $e^{i s} \gamma(t) \rightarrow \mathbf{0}$ as $t \uparrow \infty$ we find that $\operatorname{Lip}(f)=\infty$.

Theorem 1.2. Suppose Y is a normed vector space, n is a positive integer, A is a subset of $\mathbf{R}^{n}, f: A \rightarrow Y$ and $a \in \operatorname{int} A$. Suppose $\partial_{i} f$ exists in a neighborhood of a and is continuous at a for each $j=1, \ldots, n$. Then f is differentiable at a and

$$
\partial f(a)=\sum_{j=1}^{n} e^{j} \partial_{j} f(a)
$$

Proof. Let $\epsilon>0$. Choose $\delta>0$ such that if $B=\Pi_{i=1}\left(a_{i}-\delta, a_{i}+\delta\right)$ then $B \subset$ $A \cap_{i=1}^{n} \mathbf{d m n} \partial_{i} f$ and such that if $x \in B$ then

$$
\left|\partial_{j} f(x)-\partial_{j} f(a)\right| \leq \epsilon / \sqrt{n} \quad \text { whenever } j=1, \ldots, n
$$

To prove the Theorem it will suffice to show that

$$
\begin{equation*}
\left|f(x)-f(a)-\sum_{i=1}^{n}\left(x_{i}-a_{i}\right) \partial_{i} f(a)\right| \leq \epsilon|x-a| \quad \text { whenever } x \in B \tag{1}
\end{equation*}
$$

Let $x \in B$. For each $j=1, \ldots, n$ we define $\gamma_{j}:[0,1] \rightarrow A$ at t in $[0,1]$ by letting $\gamma_{1}(t)=a+t\left(x_{1}-a_{1}\right) e_{1}$ and requiring that $\gamma_{j}(t)=\gamma_{j-1}(1)+t\left(x_{j}-a_{j}\right) e_{j}$ if $j>1$. For each $j=1, \ldots, n$ we define $g_{j}:[0,1] \rightarrow Y$ at t in $[0,1]$ by letting

$$
g_{j}(t)=f\left(\gamma_{j}(t)\right)-f\left(\gamma_{j}(0)\right)-t\left(x_{j}-a_{j}\right) \partial_{j} f(a)
$$

For any $j=1, \ldots, n$ we have $g_{j}^{\prime}(t)=\left(x_{j}-a_{j}\right)\left(\partial_{j} f\left(\gamma_{j}(t)\right)-\partial_{j} f(a)\right)$ for t in $(0,1)$ which, by the previous Theorem, implies that

$$
\left|g_{j}(1)-g_{j}(0)\right| \leq\left|x_{j}-a_{j}\right| \epsilon / \sqrt{n}
$$

Thus
$\left|f(x)-f(a)-\sum_{j=1}^{n}\left(x_{j}-a_{j}\right) \partial_{j} f(a)\right|=\left|\sum_{j=1}^{n} g_{j}(1)-g_{j}(0)\right| \leq \epsilon / \sqrt{n} \sum_{j=1}^{n}\left|x_{j}-a_{j}\right| \leq \epsilon|x-a|$ so (1) holds.

Theorem 1.3 (The Chain Rule.). Suppose X, Y and Z are normed vector spaces, A is a subset of X, B is a subset of $Y, f: A \rightarrow B, g: B \rightarrow Z, a \in A, f$ is differentiable at a and g is differentiable at $f(a)$. Then $g \circ f$ is differentiable at a and

$$
\partial(g \circ f)(a)=\partial g(f(a)) \circ \partial f(a)
$$

Proof. Suppose $\epsilon>0$. Let

$$
\epsilon_{f}=\min \left\{\frac{\epsilon}{2(1+\|\partial g(f(a))\|)}, 1\right\} \quad \text { and let } \quad \epsilon_{g}=\frac{\epsilon}{2(1+\|\partial f(a)\|)}
$$

Since f is differentiable at a we may choose $\delta_{f}>0$ such that

$$
|f(x)-f(a)-\partial f(a)(x-a)| \leq \epsilon_{f}|x-a| \quad \text { whenever } x \in A \text { and }|x-a|<\delta_{f} .
$$

This together with the triangle inequality implies

$$
|f(x)-f(a)| \leq(1+||\partial f(a)||)|x-a| \quad \text { whenever } x \in A \text { and }|x-a|<\delta_{f}
$$

Since g is differentiable at $f(a)$ we may choose $\delta_{g}>0$ such that $|g(y)-g(f(a))-\partial g(f(a))(y-f(a))| \leq \epsilon_{g}|y-f(a)|$ whenever $y \in B$ and $|y-f(a)|<\delta_{g}$.
Let

$$
\delta=\min \left\{\frac{\delta_{g}}{1+\|\partial f(a)\|}, \delta_{f}\right\}
$$

If $x \in A$ and $|x-a|<\delta$ then

$$
|f(x)-f(a)| \leq(1+| | \partial f(a) \|)|x-a| \leq \delta_{g}
$$

$$
\begin{aligned}
\mid g(f(x))- & g(f(a))-\partial g(f(a))(\partial f(a)(x-a)) \mid \\
& \leq|g(f(x))-g(f(a))-\partial g(f(a))(f(x)-f(a))|+|\partial g(f(a))(f(x)-f(a)-\partial f(a)(x-a))| \\
& \leq \epsilon_{g}|f(x)-f(a)|+\| \partial g(f(a))| | \epsilon_{f}|x-a| \\
& \leq\left(\epsilon_{g}(1+\| \partial f(a)| |)+\epsilon_{f} \| \partial g(f(a))| |\right)|x-a| \\
& \leq \epsilon|x-a| .
\end{aligned}
$$

The following Theorem is a generalization of the Leibniz rule.
Theorem 1.4. Suppose Y_{1}, Y_{2}, and Z are normed vector spaces, $\mu \in \mathbf{L}\left(Y_{1}, Y_{2} ; Z\right)$ and $\left(b_{1}, b_{2}\right) \in Y_{1}, \times Y_{2}$. Then μ is differentiable at $\left(b_{1}, b_{2}\right)$ and

$$
\partial \mu\left(b_{1}, b_{2}\right)\left(v_{1}, v_{2}\right)=\mu\left(v_{1}, b_{2}\right)+\mu\left(b_{1}, v_{2}\right) \text { whenever }\left(v_{1}, v_{2}\right) \in Y_{1} \times Y_{2} .
$$

Remark 1.1. Generalize this to $Y_{1}, Y_{2}, \ldots, Y_{m}$.
s
Proof. We set $\left|\left(y_{1}, y_{2}\right)\right|=\max \left\{\left|y_{1}\right|,\left|y_{2}\right|\right\}$ for $\left(y_{1}, y_{2}\right) \in Y_{1} \times Y_{2}$. Let $\epsilon>0$. Then

$$
\begin{aligned}
\mid \mu\left(y_{1}, y_{2}\right)-\mu\left(b_{1}, b_{2}\right) & -\left[\mu\left(y_{1}-b_{1}, b_{2}\right)+\mu\left(b_{1}, y_{2}-b_{2}\right)\right] \mid \\
& =\left|\left[\mu\left(y_{1}-b_{1}, y_{2}\right)+\mu\left(b_{1}, y_{2},-b_{2}\right)\right]-\left[\mu\left(y_{1}-b_{1}, b_{2}\right)+\mu\left(b_{1}, y_{2}-b_{2}\right)\right]\right| \\
& =\left|\mu\left(y_{1}-b_{1}, y_{2}-b_{2}\right)+\mu\left(b_{1}, y_{2}-b_{2}\right)\right| \\
& \leq|\mu \||\left(\left|y_{1}-b_{1}\right|\left|y_{2}-b_{2}\right|+\left|b_{1}\right|\left|y_{2}-b_{2}\right|\right) \\
& \leq\|\mu\|\left(\left|\left(b_{1}\left|+\left|\left(y_{1}, y_{2}\right)-\left(b_{1}, b_{2}\right)\right|\right)\left|\left(y_{1}, y_{2}\right)-\left(b_{1}, b_{2}\right)\right|\right.\right.\right. \\
& \leq \epsilon\left|\left(y_{1}, y_{2}\right)-\left(b_{1}, b_{2}\right)\right|
\end{aligned}
$$

if

$$
\left|\left(y_{1}, y_{2}\right)-\left(b_{1}, b_{2}\right)\right|<\delta=\min \left\{1, \epsilon /\left(\| \mu| |\left(1+\left|b_{2}\right|\right)\right\}\right.
$$

where we have assumed $\mu \neq 0$ since Theorem holds trivially if $\mu=0$.

Theorem 1.5. Suppose X is a normed vector space, A is a subset of X and a is a point of A. Suppose Y_{i} is a normed vector space, A_{i} is a subset of $Y_{i}, f_{i}: A \rightarrow Y_{i}$ and f_{i} is differentiable at a for each $i=1,2$. Then $\left(f_{1}, f_{2}\right)$ is differentiable at a and

$$
\partial\left(f_{1}, f_{2}\right)(a)=\left(\partial f_{1}(a), \partial f_{2}(a)\right)
$$

Proof. This follows immediately from the Definition.

Example 1.4. Suppose $A \subset \mathbf{R}^{n}, f: A \rightarrow \mathbf{R}, g: A \rightarrow \mathbf{R}^{m}, a$ is an interior point of A, and f and g are differentiable at a. Then $f g$ is differentiable at a and

$$
\partial(f g)(a)(v)=f(a) \partial g(a)(v)+\partial f(a)(v) g(a) \text { whenever } v \in \mathbf{R}^{n}
$$

The point here is that $f g=\beta \circ(f, g)$ where β is the bilinear function whose value at $(c, v) \in \mathbf{R} \times \mathbf{R}^{n}$ is $c v$.

2. An example.

Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth nonzero function such that $\operatorname{spt} \phi \subset(0,1)$. Let $c \in(0,1)$ be such that $\phi^{\prime}(c) \neq 0$.

Let a and b be decreasing sequences of positive real numbers such that $\lim _{n \rightarrow \infty} b_{n}=$ 0 and $b_{n+1}<a_{n}$ for $n \in \mathbb{N}$. Note that the family $\left\{\left[a_{n}, b_{n}\right]: n \in \mathbb{N}\right\}$ is disjointed. For each $n \in N$ let m_{n} be the midpoint of the interval $\left(a_{n}, b_{n}\right)$, let $r_{n}=b_{n}-m_{n}$ and let $x_{n}=m_{n}+c r_{n}$. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be such that

$$
F(x)= \begin{cases}x_{n} r_{n} \phi\left(\frac{x-m_{n}}{r_{n}}\right) & \text { if } n \in \mathbb{N} \text { and } x \in\left(a_{n}, b_{n}\right) \\ 0 & \text { if } x \in \mathbb{R} \sim \cup_{n=0}^{\infty}\left(a_{n}, b_{n}\right)\end{cases}
$$

Then F is smooth on $\mathbb{R} \sim\{0\}$, of class C^{1} on \mathbb{R} and $F^{\prime}(0)=0$. Moreover,

$$
\lim _{x \rightarrow 0} \frac{\mid F(x)}{|x|^{2}}=0
$$

However,

$$
F^{\prime}\left(a_{n}\right)=0 \quad \text { for } n \in \mathbb{N}
$$

and

$$
\frac{F^{\prime}\left(x_{n}\right)-F^{\prime}(0)}{x_{n}-0}=\phi^{\prime}(c) \quad \text { for } n \in \mathbb{N}
$$

so F^{\prime} is not differentiable at 0 .

3. A Better example?

Suppose $q>0$. Let

$$
\begin{gathered}
f(x)= \begin{cases}x^{q+2} \sin \left(x^{-q}\right) & \text { if } x>0 \\
0 & \text { if } x \leq 0\end{cases} \\
f^{\prime}(x)=(q+2) x^{q+1} \sin \left(x^{-q}\right)-q x \cos \left(x^{-q}\right)^{\prime} \quad \text { if } x>0
\end{gathered}
$$

Thus f is of class $C^{1} ; f^{\prime}(x)=0$ if $x<0$;

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=0 \\
\frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\frac{f^{\prime}(x)}{x}=(q+1) x^{q+1} \sin \left(x^{-q}\right)-q \cos \left(x^{-q}\right) \quad \text { for } x>0
\end{gathered}
$$

it follows that f^{\prime} is it not differentiable at 0 .

