1. DIFFERENTIATION AND TANGENCY.

Definition 1.1. Suppose X and Y are normed vector spaces, A is a subset of X and $f: A \to Y$.

For each $v \in X$ we let

$$\partial_v f = \{(a,w) \in \operatorname{int} A \times Y : w = \lim_{t \to 0} \frac{1}{t} [f(a+tv) - f(a)]\}.$$

Owing to the uniqueness of limits we find that $\partial_v f$ is a function with values in Y which we call the **partial derivative of** f with respect to v. In case $X = \mathbf{R}^n$ and $i \in \{1, \ldots, n\}$ we let

$$\partial_i f = \partial_{\mathbf{e}_i} f$$

and call this function the *i*-th partial derivative of f; here \mathbf{e}_i is the *i*-th standard basis vector in \mathbb{R}^n .

Proposition 1.1. Suppose $a \in \text{int } A$. Then

- (i) $a \in \mathbf{dmn} \,\partial_0 f(a)$ and $\partial_0 f(a) = 0$;
- (ii) if $v \in X$, $a \in \operatorname{dmn} \partial_v f$ and $c \in \mathbf{R}$ then $a \in \operatorname{dmn} \partial_{cv} f$ and $\partial_{cv} f(a) = c \partial_v f(a)$;
- (iii) if $X = \mathbb{R}$ then $a \in \operatorname{dmn} \partial_1 f(a)$ if and only if f is f is differentiable at a in which case $f'(a) = \partial_1 f(a)$.

Proof. (i) and (iii) are immediate. To prove (ii) we suppose $v \in X$, $a \in \operatorname{dmn} \partial_v f, c \in \mathbf{R} \sim \{0\}$ and $\epsilon > 0$. Choose $\delta > 0$ such that

$$\left|\frac{1}{t}[f(a+tv) - f(a)] - \partial_v f(a)]\right| \le \frac{\epsilon}{|c|}$$

whenever $a + tv \in A$ and $0 < |t| < \epsilon$. Then

$$\begin{aligned} |\frac{1}{u}[f(a+ucv)-f(a)]-c\partial_v f(a)]| &= |c||\frac{1}{cu}[f(a+ucv)-f(a)]-\partial_v f(a)]| \le |c|\epsilon = \epsilon \\ \text{whenever } a+ucv \in A \text{ and } 0 < |u| < \frac{\delta}{|c|}. \end{aligned}$$

We let

$$\partial f = \{(a, L) \in \operatorname{int} A \times \mathbf{B}(X; Y) : \lim_{x \to a} \frac{|f(x) - f(a) - L(x - a)|}{|x - a|} = 0\}.$$

Owing to the uniqueness of limits we find that ∂f is a function with values in $\mathbf{B}(X;Y)$ which we call the **differential of** f. We say f is **differentiable at** a if $a \in \mathbf{dmn} \partial f$.

Proposition 1.2. Suppose f is differentiable at a. Then

- (i) $v \in X$ then $a \in \mathbf{dmn} \partial_v f$ and $\partial f(a)(v) = \partial_v f(a)$ for any $v \in X$ and
- (ii) f is continuous at a.

Proof. (i) holds trivially if v = 0 so suppose $v \in X \sim \{0\}$. For any $t \in \mathbb{R} \sim \{0\}$ we use the linearity of $\partial f(a)$ to write

$$\frac{1}{t}[f(a+tv) - f(a)] - \partial f(a)(v)| = |v| \frac{|f(a+tv) - f(a) - \partial f(a)(tv)|}{|tv|}$$

which should make (i) evident.

For any $x \in A$ we have

$$|f(x) - f(a)| \le |f(x) - f(a) - \partial f(a)(x - a)| + |\partial f(a)(x - a)|$$

$$\le |x - a| \left(\frac{|f(x) - f(a) - \partial f(a)(x - a)|}{|x - a|}\right) + ||\partial f(a)|||x - a|$$

which readily implies that

$$\lim_{x \to a} f(x) = f(a)$$

which gives (ii).

Proposition 1.3. Suppose f is locally constant. Then, for any $a \in \operatorname{int} A$, f is differentiable at a and $\partial f(a) = 0$.

Proof. This is trivial.

Proposition 1.4. Suppose A = X and $f \in \mathbf{B}(X, Y)$. Then, for any $a \in X$, f is differentiable at a and

$$\partial f(a) = f.$$

Proof. Suppose $a, x \in X$. Then

$$\frac{|f(x) - f(a) - f(x - a)|}{|x - a|} = 0.$$

Example 1.1. Let $f : \mathbf{R}^2 \to \mathbf{R}$ be such that

$$f(x,y) = \begin{cases} 1 & \text{if } y = x^2, \\ x \neq 0 & \text{else.} \end{cases}$$

I claim that

$$\partial_{(u,v)} f(0,0) = 0$$
 whenever $(u,v) \in \mathbb{R}^2$.

To verify this, note that f(0,0)=0 and that if $(u,v)\in {\bf R}^2,\, u^2+v^2=1$ and $t\neq 0$ then

$$f(t(u, v)) = \begin{cases} 0 & \text{if } v = 0, \\ 0 & \text{if } v \neq 0 \text{ and } |t| < u^2/|v|. \end{cases}$$

But f is not differentiable at (0,0) because f is not continuous at (0,0).

We will elaborate on this example later.

Example 1.2. Let f(x) = |x| for $x \in \mathbb{R}^n$ and suppose $a \in \mathbb{R}^n \sim \{0\}$. I claim that f is differentiable at a and that

(1)
$$\partial f(a)(v) = \frac{v \bullet a}{|a|}, \quad v \in \mathbf{R}^n.$$

This will follow directly from the inequality

(2)
$$||x| - |a| - \frac{(x-a) \bullet a}{|a|}| \le 2\frac{|x-a|^2}{|x|+|a|}, \quad x \in \mathbf{R}^n.$$

 $\mathbf{2}$

Indeed, if (2) holds, given $\epsilon > 0$ we let $\delta = \frac{\epsilon}{2|a|}$ and find that if $|x - a| < \delta$ then

$$\frac{|f(x) - f(a) - |a|^{-1}(x - a) \bullet a|}{|x - a|} \le 2\frac{|x - a|}{|x| + |a|} \le \frac{2\delta}{|a|} \le \epsilon.$$

To prove (2) we multiply it by |a|(|x| + |a|) and obtain the equivalent inequality

(3) $||a|(|x|+|a|)(|x|-|a|) - (|x|+|a|)(x-a) \bullet a| \le 2|a||x-a|^2, \quad x \in \mathbf{R}^n.$ We have

$$|a|(|x| + |a|)(|x| - |a|) - (|x| + |a|)(x - a) \bullet a$$

= $|a|(x + a) \bullet (x - a) - (|x| + |a|)(x - a) \bullet a$
= $(|a|(x + a) - (|x| + |a|)a) \bullet (x - a)$
= $(|a|x - |x|a) \bullet (x - a).$

Moreover,

 $||a|x - |x|a| = ||a|(x - a) + (|a| - |x|)a| \le |a|(|x - a| + ||x| - |a||) \le 2|a||x - a|,$ establishing (3).

Definition 1.2. Suppose X and Y are metric spaces, A is a subset of X and $f: A \to Y$. We let

$$\mathbf{Lip}(f) = \sup\{\frac{\rho_Y(f(x), f(y))}{\rho_X(x, y)} : x, y \in A \text{ and } x \neq a\}$$

and call this extended real number the Lipschitz constant of f.

Lemma 1.1. Suppose $\gamma : [0,1] \to Y$; γ is continuous; $0 \le N < \infty$ and γ is differentiable at each point of (0,1) with

$$|\gamma'(t)| \leq N$$
 whenever $t \in (0,1)$.

Then

$$(1) \qquad \qquad |\gamma(1) - \gamma(0)| \le N.$$

Proof. Suppose $N < \tilde{N} < \infty$ and let

$$T = \{t \in [0,1] : |\gamma(s) - \gamma(0)| \le \tilde{N}s \text{ whenever } 0 \le s \le t\}.$$

Evidently, T is an interval containing 0, $T \subset [0,1]$ and T is closed since γ is continuous. Let

(2)
$$t_1 = \sup T \in T.$$

Were it the case that $t_1 < 1$, we could choose $t_2 \in (t_1, 1]$ such that if $t_1 < t \le t_2$ then $|\gamma(t) - \gamma(t_1)| \le \tilde{N}(t_1 - t)$ because $\gamma'(t_1)$ exists and has norm not exceeding N. But this implies that

$$|\gamma(s)| \le |\gamma(s) - \gamma(t_1)| + |\gamma(t_1)| \le \tilde{N}(s - t_1) + \tilde{N}t_1 = \tilde{N}s$$

whenever $t_1 < s \le t_2$. So $t_2 \in T$ which is incompatible with (2). So $1 = t_1 \in T$ and therefore $|\gamma(1) - \gamma(0)| \le \tilde{N}$, which, owing to the arbitrariness of \tilde{N} , implies (1). \Box

Theorem 1.1. Suppose X and Y are normed vector space, A is a open subset of $X, f: A \to Y$. Suppose that $\partial_v f(a)$ exists for each $(a, v) \in A \times X$ and let

$$M = \sup\{|\partial_v f(a)| : a \in A, v \in X \text{ and } |v| = 1\}$$

Then

$$M \leq \operatorname{Lip}(f)$$

with equality if A is convex.

Proof. Suppose $a \in A$. Choose $\delta > 0$ such that $\{x \in X : |x - a| < \delta\} \subset A$. For any $v \in X \sim \{0\}$ and any real number t with $|t| < \delta/|v|$ we have

$$|t^{-1}(f(a+tv) - f(a))| \le t^{-1} \mathbf{Lip}(f) |(a+tv) - a| = \mathbf{Lip}(f).$$

Thus $M \leq \operatorname{Lip}(f)$.

Now suppose A is convex, $a, b \in A$ and $M < \infty$. Let $\gamma(t) = f(a + t(b - a)) - f(a)$, $0 \leq t \leq 1$. Because $\partial_{b-a}f(a+t(b-a))$ exists and has norm not exceeding M for each $t \in [0, 1]$ we find that γ is continuous on [0, 1] and differentiable on (0, 1) with

$$\gamma'(t)| = |\partial_{b-a} f(a + t(b-a))||b-a| \le M|b-a|, \ 0 < t < 1$$

Suppose $M < \tilde{M} < \infty$. The Theorem now follows from the previous Lemma.

Example 1.3. In this example we will see that equality need not hold in the previous Theorem if A is not convex. Let

$$\gamma(t) \ = \ \frac{e^{it}}{t} \in \mathbf{C}, \quad 1 < t < \infty;$$

 let

$$L(t) \,=\, \int_1^t |\gamma'(\tau)|\,d\tau;$$

let

$$A = \{e^{is}\gamma(t) : 1 < t < \infty \text{ and } |s| < \frac{\pi}{2}\} \subset \mathbf{C};$$

note that

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right) \times (1,\infty) \ni (s,t) \mapsto e^{is}\gamma(t)$$

is univalent; and define $f: A \to \mathbf{R}$ by requiring that

$$f(e^{is}\gamma(t)) = L(t) \quad \text{if } |s| < \pi \text{ and } 1 < t < \infty.$$

Then A is open, f is differentiable at each point of A and

$$\sup\{||\partial f(\underline{\mathbf{a}})||: a \in A\} < \infty.$$

(Proof?) But, as $L(t) \uparrow \infty$ and as $e^{is}\gamma(t) \to \mathbf{0}$ as $t \uparrow \infty$ we find that $\operatorname{Lip}(f) = \infty$.

Theorem 1.2. Suppose Y is a normed vector space, n is a positive integer, A is a subset of \mathbb{R}^n , $f: A \to Y$ and $a \in \operatorname{int} A$. Suppose $\partial_i f$ exists in a neighborhood of a and is continuous at a for each $j = 1, \ldots, n$. Then f is differentiable at a and

$$\partial f(a) = \sum_{j=1}^{n} e^j \,\partial_j f(a).$$

Proof. Let $\epsilon > 0$. Choose $\delta > 0$ such that if $B = \prod_{i=1} (a_i - \delta, a_i + \delta)$ then $B \subset \mathbb{C}$ $A \cap_{i=1}^{n} \operatorname{\mathbf{dmn}} \partial_{i} f$ and such that if $x \in B$ then

$$|\partial_j f(x) - \partial_j f(a)| \le \epsilon / \sqrt{n}$$
 whenever $j = 1, \dots, n$.

To prove the Theorem it will suffice to show that

(1)
$$|f(x) - f(a) - \sum_{i=1}^{n} (x_i - a_i)\partial_i f(a)| \le \epsilon |x - a| \quad \text{whenever } x \in B.$$

Let $x \in B$. For each j = 1, ..., n we define $\gamma_j : [0, 1] \to A$ at t in [0, 1] by letting $\gamma_1(t) = a + t (x_1 - a_1) e_1$ and requiring that $\gamma_j(t) = \gamma_{j-1}(1) + t (x_j - a_j) e_j$ if j > 1. For each j = 1, ..., n we define $g_j : [0, 1] \to Y$ at t in [0, 1] by letting

$$g_j(t) = f(\gamma_j(t)) - f(\gamma_j(0)) - t(x_j - a_j) \partial_j f(a)$$

For any j = 1, ..., n we have $g'_j(t) = (x_j - a_j)(\partial_j f(\gamma_j(t)) - \partial_j f(a))$ for t in (0, 1)which, by the previous Theorem, implies that

$$|g_j(1) - g_j(0)| \le |x_j - a_j| \epsilon / \sqrt{n}.$$

Thus

$$|f(x) - f(a) - \sum_{j=1}^{n} (x_j - a_j) \partial_j f(a)| = |\sum_{j=1}^{n} g_j(1) - g_j(0)| \le \epsilon / \sqrt{n} \sum_{j=1}^{n} |x_j - a_j| \le \epsilon |x - a|$$

so (1) holds.

so (1) holds.

Theorem 1.3 (The Chain Rule.). Suppose X, Y and Z are normed vector spaces, A is a subset of X, B is a subset of Y, $f : A \to B, g : B \to Z, a \in A, f$ is differentiable at a and g is differentiable at f(a). Then $g \circ f$ is differentiable at a and

$$\partial(g \circ f)(a) = \partial g(f(a)) \circ \partial f(a).$$

Proof. Suppose $\epsilon > 0$. Let

$$\epsilon_f = \min\{\frac{\epsilon}{2(1+||\partial g(f(a))||)}, 1\}$$
 and let $\epsilon_g = \frac{\epsilon}{2(1+||\partial f(a)||)}$

Since f is differentiable at a we may choose $\delta_f > 0$ such that

$$|f(x) - f(a) - \partial f(a)(x - a)| \le \epsilon_f |x - a|$$
 whenever $x \in A$ and $|x - a| < \delta_f$.

This together with the triangle inequality implies

$$|f(x) - f(a)| \le (1 + ||\partial f(a)||) |x - a|$$
 whenever $x \in A$ and $|x - a| < \delta_f$.

Since g is differentiable at f(a) we may choose $\delta_g > 0$ such that $|g(y) - g(f(a)) - \partial g(f(a))(y - f(a))| \le \epsilon_g \, |y - f(a)| \ \text{ whenever } y \in B \text{ and } |y - f(a)| < \delta_g.$ Let

$$\delta = \min\{\frac{\delta_g}{1+||\partial f(a)||}, \delta_f\}.$$

If $x \in A$ and $|x - a| < \delta$ then

$$|f(x) - f(a)| \le (1 + ||\partial f(a)||) |x - a| \le \delta_g$$

$$\begin{aligned} |g(f(x)) - g(f(a)) - \partial g(f(a))(\partial f(a)(x-a))| \\ &\leq |g(f(x)) - g(f(a)) - \partial g(f(a))(f(x) - f(a))| + |\partial g(f(a))(f(x) - f(a) - \partial f(a)(x-a))| \\ &\leq \epsilon_g |f(x) - f(a)| + ||\partial g(f(a))|| \epsilon_f |x-a| \\ &\leq (\epsilon_g (1 + ||\partial f(a)||) + \epsilon_f ||\partial g(f(a))||) |x-a| \\ &\leq \epsilon |x-a|. \end{aligned}$$

The following Theorem is a generalization of the Leibniz rule.

Theorem 1.4. Suppose Y_1, Y_2 , and Z are normed vector spaces, $\mu \in \mathbf{L}(Y_1, Y_2; Z)$ and $(b_1, b_2) \in Y_1, \times Y_2$. Then μ is differentiable at (b_1, b_2) and

$$\partial \mu(b_1, b_2)(v_1, v_2) = \mu(v_1, b_2) + \mu(b_1, v_2)$$
 whenever $(v_1, v_2) \in Y_1 \times Y_2$.

Remark 1.1. Generalize this to Y_1, Y_2, \ldots, Y_m .

$$\mathbf{S}$$

$$\begin{array}{l} \textit{Proof. We set } |(y_1, y_2)| = \max\{|y_1|, |y_2|\} \text{ for } (y_1, y_2) \in Y_1 \times Y_2. \text{ Let } \epsilon > 0. \text{ Then} \\ |\mu(y_1, y_2) - \mu(b_1, b_2) - [\mu(y_1 - b_1, b_2) + \mu(b_1, y_2 - b_2)]| \\ &= |[\mu(y_1 - b_1, y_2) + \mu(b_1, y_2, -b_2)] - [\mu(y_1 - b_1, b_2) + \mu(b_1, y_2 - b_2)]| \\ &= |\mu(y_1 - b_1, y_2 - b_2) + \mu(b_1, y_2 - b_2)| \\ &\leq ||\mu||(|y_1 - b_1||y_2 - b_2| + |b_1||y_2 - b_2|) \\ &\leq ||\mu||(|b_1| + |(y_1, y_2) - (b_1, b_2)|)|(y_1, y_2) - (b_1, b_2)| \\ &\leq \epsilon |(y_1, y_2) - (b_1, b_2)| \end{array}$$

 $\mathbf{i}\mathbf{f}$

$$|(y_1, y_2) - (b_1, b_2)| < \delta = \min\{1, \epsilon/(||\mu||(1+|b_2|))\}$$

where we have assumed $\mu \neq 0$ since Theorem holds trivially if $\mu = 0$.

Theorem 1.5. Suppose X is a normed vector space, A is a subset of X and a is a point of A. Suppose Y_i is a normed vector space, A_i is a subset of Y_i , $f_i : A \to Y_i$ and f_i is differentiable at a for each i = 1, 2. Then (f_1, f_2) is differentiable at a and

$$\partial(f_1, f_2)(a) = (\partial f_1(a), \partial f_2(a)).$$

Proof. This follows immediately from the Definition.

Example 1.4. Suppose $A \subset \mathbf{R}^n$, $f : A \to \mathbf{R}$, $g : A \to \mathbf{R}^m$, *a* is an interior point of *A*, and *f* and *g* are differentiable at *a*. Then *fg* is differentiable at *a* and

$$\partial (fg)(a)(v) = f(a)\partial g(a)(v) + \partial f(a)(v)g(a)$$
 whenever $v \in \mathbf{R}^n$.

The point here is that $fg = \beta \circ (f,g)$ where β is the bilinear function whose value at $(c, v) \in \mathbf{R} \times \mathbf{R}^n$ is cv.

6

 \mathbf{SO}

2. An example.

Let $\phi : \mathbb{R} \to \mathbb{R}$ be a smooth nonzero function such that $\operatorname{spt} \phi \subset (0,1)$. Let $c \in (0,1)$ be such that $\phi'(c) \neq 0$.

Let a and b be decreasing sequences of positive real numbers such that $\lim_{n\to\infty} b_n = 0$ and $b_{n+1} < a_n$ for $n \in \mathbb{N}$. Note that the family $\{[a_n, b_n] : n \in \mathbb{N}\}$ is disjointed. For each $n \in N$ let m_n be the midpoint of the interval (a_n, b_n) , let $r_n = b_n - m_n$ and let $x_n = m_n + cr_n$. Let $F : \mathbb{R} \to \mathbb{R}$ be such that

$$F(x) = \begin{cases} x_n r_n \phi\left(\frac{x-m_n}{r_n}\right) & \text{if } n \in \mathbb{N} \text{ and } x \in (a_n, b_n), \\ 0 & \text{if } x \in \mathbb{R} \sim \bigcup_{n=0}^{\infty} (a_n, b_n). \end{cases}$$

Then F is smooth on $\mathbb{R} \sim \{0\}$, of class C^1 on \mathbb{R} and F'(0) = 0. Moreover,

$$\lim_{x \to 0} \frac{|F(x)|}{|x|^2} = 0.$$

However,

$$F'(a_n) = 0 \quad \text{for } n \in \mathbb{N}$$

and

$$\frac{F'(x_n) - F'(0)}{x_n - 0} = \phi'(c) \quad \text{for } n \in \mathbb{N}$$

so F' is *not* differentiable at 0.

3. A better example?

Suppose q > 0. Let

$$f(x) = \begin{cases} x^{q+2}\sin(x^{-q}) & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

 $f'(x) = (q+2)x^{q+1}\sin(x^{-q}) - qx\cos(x^{-q})' \quad \text{if } x > 0.$

Thus f is of class C^1 ; f'(x) = 0 if x < 0;

$$\lim_{x \to 0} \frac{f(x)}{x^2} = 0;$$

$$\frac{f'(x) - f'(0)}{x - 0} = \frac{f'(x)}{x} = (q + 1)x^{q+1}\sin(x^{-q}) - q\cos(x^{-q}) \quad \text{for } x > 0;$$

it follows that f' is it not differentiable at 0.