1. DIFFERENTIATION AND TANGENCY.

Definition 1.1. Suppose X and Y are normed vector spaces, A is a subset of X
and f: A—=Y.
For each v € X we let

Opf ={(a,w) EINt AXY :w zgi_rf(l)%[f(a—l—tv) — f(a)]}.

Owing to the uniqueness of limits we find that 9, f is a function with values in
Y which we call the partial derivative of f with respect to v. In case X = R"
and i € {1,...,n} we let
alf = aeif
and call this function the i-th partial derivative of f; here e; is the i-th standard
basis vector in R™.

Proposition 1.1. Suppose a € int A. Then

(i) a € dmn 9y f(a) and dy f(a) = 0;
(ii) if v € X, a € dmnd,f and ¢ € R then a € dmnd.,f and I, f(a) =

Cavf(a);
(iii) if X =R then a € dmn 0 f(a) if and only if f is f is differentiable at a in
which case f'(a) = 01f(a).

Proof. (i) and (iii) are immediate. To prove (ii) we supposev € X, a € dmnd, f,c €
R ~ {0} and € > 0. Choose § > 0 such that

et ) = f(@)] - df@) < 5

whenever a +tv € A and 0 < |t| < e. Then
2 (@t uev) — f(@)] — ey f(@)]] = lell - [F(a-+ ucv) — f(a)] ~ (@] < Iele = e

ol —
cu
whenever a 4+ ucv € A and 0 < |u| < %. O

We let
0f = {(a.L) € int A x B(X; V) : lim LB =S =Lz Za)l_ ).

r—a |x — a|

Owing to the uniqueness of limits we find that df is a function with values in
B(X;Y) which we call the differential of f. We say f is differentiable at a if
a € dmnOf.
Proposition 1.2. Suppose f is diffenentiable at a. Then
(i) v € X then a € dmnd, f and 9f(a)(v) = 0, f(a) for any v € X and
(ii) f is continuous at a.
Proof. (i) holds trivially if v = 0 so suppose v € X ~ {0}. For any t € R ~ {0} we
use the linearity of df(a) to write
1 |f(a+tv) — f(a) — 8f(a)(tv)|
$1f(a+ 1) = (@) - 0 (@)(w)| = o o

which should make (i) evident.



For any = € A we have

[f(z) = f(a)| < [f(x) = f(a) = Of(a)(x — a)| + 0] (a)(x — a)]
|

<o - of (VLD ZHEZD0 4 jos@ie - o
which readily implies that
lim f(2) = f(a)
which gives (ii). O

Proposition 1.3. Suppose f is locally constant. Then, for any a € int A, f is
differentiable at a and df(a) = 0.

Proof. This is trivial. O

Proposition 1.4. Suppose A = X and f € B(X,Y). Then, for any a € X, f is
differentiable at a and

df(a) = f.
Proof. Suppose a,x € X. Then
[f(z) = fa) = f(z—a)|

=0.
|z —al

Example 1.1. Let f: R? — R be such that
1 if y = 22,
f(@y) = {x #0 else.

I claim that
O(u,0)f(0,0) = 0 whenever (u,v) € R2.
To verify this, note that f(0,0) = 0 and that if (u,v) € R?, u? +v?>=1and t #0
then
0 ifv=0,
f(t(u, v)) = . 2
0 ifv=#0and [t| <u?/|v].
But f is not differentiable at (0,0) because f is not continuous at (0, 0).

We will elaborate on this example later.

Example 1.2. Let f(z) = |z| for z € R™ and suppose a € R™ ~ {0}. I claim that
f is differentiable at a and that

(1) 9f(a)(v) =

This will follow directly from the inequality

vea

, veR™
lal

(a:—a)oa|

|al
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@ ol ~ ol - < ,
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z e R".




Indeed, if (2) holds, given ¢ > 0 we let § = 37a7 and find that if |z —a| < 0 then

al

f(@) = fa)—lal (w—a)eal _ lw—a _2% __
2=l = Tl + ol = ol =

To prove (2) we multiply it by |a|(|x| 4 |a|) and obtain the equivalent inequality
3)  lal(z] + lal)(Jz| = |a]) = (2] + |al)(z — a) e a| < 2[allz —af*, 2 €R™
We have

lal(lz] + la)(|z] — lal) — (|z] + |a[)(z — a) e a
= lal(z +a) o (z —a) = (Jz[ +|a])(z —a) ea
= (lal(z + a) = (|2] + |a])a) o (z — a)
= (|la|z — |z|a) ® (z — a).
Moreover,
|lalz — |z]a| = [lal(z — a) + (la| = |z])a] < |al(Jz — a| + [|z] = |al|) < 2|allz — al,

establishing (3).

Definition 1.2. Suppose X and Y are metric spaces, A is a subset of X and
f:A—=Y. We let

o) = ey UELI)
Lip(f) = p{ px(z,y)

and call this extended real number the Lipschitz constant of f.

cx,y € Aand x # a}

Lemma 1.1. Suppose v : [0,1] — Y; v is continuous; 0 < N < oo and 7 is
differentiable at each point of (0,1) with

|7/ (t)] < N whenever t € (0,1).
Then
(1) [y(1) =7 (0)] < N.
Proof. Suppose N < N < 0o and let
T ={te[0,1] : |y(s) —v(0)] < Ns whenever 0 < s < t}.

Evidently, T is an interval containing 0, 7" C [0,1] and T is closed since ~ is
continuous. Let

(2) ty =supT € T.

Were it the case that ¢; < 1, we could choose ty € (¢1,1] such that if t; <t < tg
then |y(t) —v(t1)] < N(t; —t) because 7/(t1) exists and has norm not exceeding
N. But this implies that

()] < Iv(s) = v+ [y(t)] < N(s = t1) + Nt; = Ns

whenever t; < s < ty. So ta €T which is incompatible with (2). §o 1=1¢ €T and
therefore |y(1) —(0)| < N, which, owing to the arbitrariness of N, implies (1). O



4

Theorem 1.1. Suppose X and Y are normed vector space, A is a open subset of
X, f: A—Y. Suppose that 9, f(a) exists for each (a,v) € A x X and let
M =sup{|0,f(a)| :a € A, ve X and |v| =1}.
Then
M < Lip(f)
with equality if A is convex.

Proof. Suppose a € A. Choose 6 > 0 such that {x € X : |x —a| < §} C A. For any
v € X ~ {0} and any real number ¢ with |t| < §/|v| we have

171 (f(a+tv) = f(a))] <+~ "Lip(f)|(a + tv) — a| = Lip(f).
Thus M < Lip(f).

Now suppose A is convex, a,b € A and M < oo. Let v(t) = f(a + t(b—a)) —
f(a), 0 <t <1. Because Oy—o f(a+t(b—a)) exists and has norm not exceeding M
for each t € [0,1] we find that v is continuous on [0, 1] and differentiable on (0, 1)
with

()] = 8b—of(a+tb— a))lb—al < Mlb—al, 0<t < 1.

Suppose M < M < oo. The Theorem now follows from the previous Lemma. O

Example 1.3. In this example we will see that equality need not hold in the
previous Theorem if A is not convex. Let

it
y(t) = %EC, 1<t < oo

let

¢

L) = [ 1)l

1

let
A = {e"y(t):1 <t <ooand |s|<g}CC;

note that

T
(_§a E

is univalent; and define f : A — R by requiring that
fle™y(t)) = L(t) if|s|]<mand 1<t < co.

) x (1,00) 3 (s,t) — e"(t)

Then A is open, f is differentiable at each point of A and
sup{[[0f (2] : a € A} < oo.
(Proof?) But, as L(t) 1 co and as e®v(t) — 0 as t T oo we find that Lip(f) = co.

Theorem 1.2. Suppose Y is a normed vector space, n is a positive integer, A is a
subset of R, f: A — Y and a € int A. Suppose 0, f exists in a neighborhood of a
and is continuous at a for each j = 1,...,n. Then f is differentiable at a and

Of(a)=> € 0;f(a).
j=1
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Proof. Let € > 0. Choose § > 0 such that if B = II;—;(a; — d,a; + 0) then B C
AN?_, dmn;f and such that if x € B then
|0; f(z) — 0jf(a)| < e€/v/n whenever j=1,...,n

To prove the Theorem it will suffice to show that

(1) |f(z) — f(a) - Z(Qﬁz —a;)0;f(a)] < €lx —a|] whenever x € B.

i=1
Let z € B. For each j = 1,...,n we define ~; : [0,1] — A at t in [0, 1] by letting
7 (t) = a+t(x1 —a1) er and requiring that v;(t) = ;-1 (1) +t (xz; —a;)e; if j > 1.
For each j =1,...,n we define g; : [0,1] = Y at ¢ in [0, 1] by letting
9i(t) = f(7 (1) = f((0)) — t (x5 — a;) 95 f(a).
For any j = 1,...,n we have g}(t) = (z; — a;)(9; f(7;(t)) — 0;f(a)) for ¢ in (0,1)
which, by the previous Theorem, implies that
195(1) — g;(0)] < |z; — aj|e//n.
Thus
)= _(w;—a;) 9;f(a |Zg] |<e/fZ|xg a;| < elz—al
j=1

o (1) holds. O

Theorem 1.3 (The Chain Rule.). Suppose X, Y and Z are normed vector spaces,
A is a subset of X, Bisasubset of Y, f: A > B, g: B — Z,a € A, fis
differentiable at a and g is differentiable at f(a). Then g o f is differentiable at a
and

d(go f)(a) = dg(f(a)) 0 df(a).

Proof. Suppose € > 0. Let
€ €

,1} andlet ¢g=—————.
2(1 +[|9g(f(a))l]) 201+ [[0f(a)l])
Since f is differentiable at a we may choose ¢y > 0 such that

|f(z) — f(a) —0f(a)(z —a)| < ey |x —a|] whenever x € A and |z — a| < dy.

€ = min{

This together with the triangle inequality implies
|f(z) — f(a)] < (1 +]|0f(a)|]) |x —a| whenever x € A and |z — a| < 5.
Since g is differentiable at f(a) we may choose d, > 0 such that

9(y)—9(f(a))=09(f(a))(y—f(a))| < & [y—f(a)| whenever y € B and |y — f(a)| < d.

Let
dg

L+ [10f (a)l]’

4 = min{ dr}.

If v € A and |x — a] < ¢ then
[f(z) = fla)] < A+ |0f(a)l]) |z —al <4,
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l9(f(2))—g(f(a)) — 0g(f(a))(0f (a)(z — a))]
< lg(f(@)) = g(f(a)) = 0g(f(a))(f(x) — f(a))| +0g(f(a))(f(x) — f(a) — Of (a)(x — a))|
<€ |f(@) = fla)| + [10g(f(a))ll €5 |+ — al
< (eg (L+110F(a)l]) + €5 [10g(f (@)I]) |z — al
< elx—al.

The following Theorem is a generalization of the Leibniz rule.

Theorem 1.4. Suppose Y7,Ys, and Z are normed vector spaces, u € L(Y7,Ys; Z)
and (b1,b2) € Y1, xY3. Then p is differentiable at (b1, be) and

Op(by, bo)(v1,v2) = u(vy,be) + p(by, va) whenever (vi,v9) € Y7 X Ys.
Remark 1.1. Generalize this to Y7,Y5,...,Y,,.
s
Proof. We set |(y1,y2)| = max{|yi|, |y2|} for (y1,y2) € Y1 x Ya. Let € > 0. Then
[(y1,y2) — (b1, b2) — [p(yr — b1, b2) + p(bi, y2 — b2
= |[u(yr — b1, y2) + pu(b1,y2, —b2)] — [y — b1, b2) + p(br, y2 — b2)]|
= |u(y1 — b1,y2 — b2) + p(b1,y2 — ba)|
< [ul(Jyr — b1| ly2 — ba| + [b1] |y2 — b2])
< [l (br] + [(y1,y2) — (b1, b2)])[(y1, y2) — (b1, b2)]
< €l(y1,y2) — (b1, b2)]
if
|(y1,y2) — (b1, b2)] < 6 =min{1, e/([[n]|(1 + [b2])}

where we have assumed p # 0 since Theorem holds trivially if 4 = 0. (]

Theorem 1.5. Suppose X is a normed vector space, A is a subset of X and a is a
point of A. Suppose Y; is a normed vector space, A; is a subset of Y, f; : A > Y}
and f; is differentiable at a for each ¢ = 1,2. Then (fi, f2) is differentiable at a and

A(f1, f2)(a) = (0f1(a), 0 f2(a)).
Proof. This follows immediately from the Definition. O

Example 1.4. Suppose ACR", f: A= R, g: A— R™, a is an interior point
of A, and f and g are differentiable at a. Then fg is differentiable at a and

0(f9)()(v) = F(@)Dg(a)(v) + Df (a)(v)g(a) whenever v € R

The point here is that fg = 8o (f,g) where 8 is the bilinear function whose value
at (c,v) € R x R" is cv.



2. AN EXAMPLE.

Let ¢ : R — R be a smooth nonzero function such that spt¢ C (0,1). Let
¢ € (0,1) be such that ¢'(c) # 0.

Let a and b be decreasing sequences of positive real numbers such that lim,,_,, b, =
0 and b,11 < a, for n € N. Note that the family {[a,,b,] : n € N} is disjointed.
For each n € N let m,, be the midpoint of the interval (a,,by,), let r, = b, — my,
and let z,, = m,, + cr,. Let F': R — R be such that
Flz) = {xnrnd) (%) if n € Nand z € (an,by),

0 if x € R~ U2 o(an,bn).
Then F is smooth on R ~ {0}, of class C' on R and F'(0) = 0. Moreover,
tim 10 _
a3 Ja|?
However,

F'(an)=0 forneN

and
F'(zy) — F'(0)
Ty, — 0
so F' is not differentiable at 0.

=¢'(c) forneN

3. A BETTER EXAMPLE?

Suppose ¢ > 0. Let

29t 2sin(x~?) ifx >0,
f(z) = =) .
0 if z <0.

() = (qg+2)29 " sin(z™9) — grcos(z™9) if x> 0.
Thus f is of class C1; f/(x) =0 if z < 0;

z—0 I
f’(.’lﬁx) : g/(o) _ f/;ﬂ?) _ (q + 1)$q+1 Sin(l‘_q) _ (]COS(Qj_q) for z > 0:

it follows that f’ is it not differentiable at 0.



