1. Differentiation of vector valued functions of a real variable.

Definition 1.1. Suppose $A \subset \mathbb{R}, E$ is a normed vector space,

$$
f: A \rightarrow E .
$$

We let

$$
f^{\prime}=\left\{(a, m): a \in \operatorname{int} A \text { and } m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}\right\}
$$

Note that f^{\prime} is a function. We say f is differentiable at a if a is in the domain of f^{\prime}. For each nonegative integer m we define $f^{(m)}$ by setting $f^{(0)}=f, f^{(1)}=f^{\prime}$ and requiring that $f^{(m+1)}=\left(f^{(m)}\right)^{\prime}$.

Theorem 1.1. Suppose $A \subset \mathbb{R}, E$ is a normed vector space, $f: A \rightarrow E$ and f is differentiable at a. Then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

That is, f is continuous at a.
Proof. We give two proofs. The first use rules for limits and the second uses ϵ and δ.

1st Proof. We have

$$
f(x)=\left(\frac{f(x)-f(a)}{x-a}\right)(x-a)+f(a) \quad \text { for } a \in A .
$$

Moreover,

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a), \quad \lim _{x \rightarrow a} x-a=0 \quad \text { and } \quad \lim _{x \rightarrow a} f(a)=f(a)
$$

It follows from the rules for limits that

$$
\lim _{x \rightarrow a} f(x)=f^{\prime}(a) 0+f(a)=f(a)
$$

2nd Proof. Let $\epsilon>0$. There is $\eta>0$ such that

$$
x \in A \text { and } 0<|x-a|<\eta \Rightarrow\left|\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)\right| \leq 1
$$

Let

$$
\delta=\min \left\{\frac{\epsilon}{1+\left|f^{\prime}(a)\right|}, \eta\right\} .
$$

If $x \in A$ and $0<|x-a|<\delta$ then

$$
\begin{aligned}
|f(x)-f(a)| & =\left(\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)\right)(x-a)+f^{\prime}(a)(x-a) \\
& \leq\left|\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)\right||x-a|+\left|f^{\prime}(a)\right||x-a| \\
& \leq\left(1+\left|f^{\prime}(a)\right|\right)|x-a| \\
& <\epsilon
\end{aligned}
$$

Theorem 1.2. Suppose $A \subset \mathbb{R}$,

$$
f: A \rightarrow \mathbb{R}
$$

f is differentiable at a and either

$$
f(x) \leq f(a) \quad \text { whenever } x \in A
$$

or

$$
f(x) \geq f(a) \quad \text { whenever } x \in A
$$

Then

$$
f^{\prime}(a)=0
$$

Remark 1.1. Note that

$$
\frac{g \circ f(x)-g \circ f(a)}{x-a}=\frac{g \circ f(x)-g \circ f(a)}{f(x)-f(a)} \frac{f(x)-f(a)}{x-a}
$$

whenever $x \in A \sim\{a\}$ and $f(x) \in B \sim\{b\}$.
Proof. Let $\epsilon>0$. Choose $\delta>0$ such that

$$
\begin{equation*}
x \in A \text { and } 0<|x-a|<\delta \Rightarrow\left|\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)\right|<\epsilon . \tag{1}
\end{equation*}
$$

This amounts to

$$
\begin{equation*}
x \in A \text { and } 0<|x-a|<\delta \Rightarrow \frac{f(x)-f(a)}{x-a}-\epsilon<f^{\prime}(a)<\frac{f(x)-f(a)}{x-a}+\epsilon \tag{1}
\end{equation*}
$$

Suppose $f(x) \leq f(a)$ whenever $x \in A$. Then (1) amounts to

$$
x \in A \text { and } 0<|x-a|<\delta \Rightarrow \frac{f(x)-f(a)}{x-a}-\epsilon<f^{\prime}(a)<\frac{f(x)-f(a)}{x-a}+\epsilon .
$$

Keeping in mind that $a \in \operatorname{acc} A$ we choose $x \in A \cap(a, a-\delta)$ to infer that $-\epsilon<f^{\prime}(a)$ and choose $x \in A \cap(a, a+\delta)$ to infer that $f^{\prime}(a)<\epsilon$. Since ϵ is arbitrary we conclude that $f^{\prime}(a)=0$.

Suppose $f(x) \geq f(a)$ whenever $x \in A$. Then (1) amounts to

$$
x \in A \text { and } 0<|x-a|<\delta \Rightarrow f^{\prime}(a)-\epsilon<\frac{f(x)-f(a)}{x-a}<f^{\prime}(a)+\epsilon
$$

Keeping in mind that $a \in \operatorname{acc} A$ we choose $x \in A \cap(a, a-\delta)$ to infer that $-\epsilon<f^{\prime}(a)$ and choose $x \in A \cap(a, a+\delta)$ to infer that $f^{\prime}(a)<\epsilon$. Since ϵ is arbitrary we conclude that $f^{\prime}(a)=0$.

Alternatively, having dealt with one of these cases we can replace f by $-f$ to handle the other case.

Theorem 1.3. (The Chain Rule) Suppose
(i) $a \in A \subset \mathbb{R}, f: A \rightarrow \mathbb{R}$ and f is differentiable at a.
(ii) $b \in B \subset \mathbb{R}, g: B \rightarrow \mathbb{R}$ and g is differentiable at b
(iii) $b=f(a)$.

Then $g \circ f$ is differentiable at a and

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)
$$

Proof. 1st Proof. Since $b \in \operatorname{int} B$ there is an open subset V of \mathbb{R} such that $b \in V \subset B$. Since f is continuous at a there is an open subset U of \mathbb{R} such that $a \in U$ and $f[A \cap U] \subset V$. Since $a \in \operatorname{int} A$ it follows that $a \in \operatorname{int} \operatorname{dmn} g \circ f$.

Let $s: B \rightarrow \mathbb{R}$ be such that

$$
s(y)= \begin{cases}\frac{g(y)-g(b)}{y-b}-g^{\prime}(b) & \text { if } y \in B \text { and } y \neq b \\ 0 & \text { if } y=b\end{cases}
$$

Then s is continuous at b. If $x \in \operatorname{dmn} g \circ f$ and $x \neq a$ we have

$$
\begin{equation*}
\frac{g(f(x))-g(f(a))}{x-a}=g^{\prime}(f(a)) \frac{f(x)-f(a)}{x-a}+s(f(x)) \frac{f(x)-f(a)}{x-a} \tag{4}
\end{equation*}
$$

By previous theory,

$$
\lim _{x \rightarrow a} s(f(x))=s\left(\lim _{x \rightarrow a} f(x)\right)=s(f(a)=0
$$

We complete the proof by letting $x \rightarrow a$ in (4) and using limit rules. proof.

2nd Proof. Set

$$
O(x)=g \circ f(x)-g \circ f(a)-g^{\prime}(f(a)) f^{\prime}(a)(x-a) \quad \text { for } x \in A
$$

Having already shown that a is an interior point of the domain of $g \circ f$ the statement to be proved is equivalent to

$$
\lim _{x \rightarrow a} \frac{O(x)}{x-a}=0
$$

Set

$$
N(y)=g(y)-g(f(a))-g^{\prime}(f(a))(y-f(a)) \quad \text { for } y \in B
$$

and set

$$
M(x)=f(x)-f(a)-f^{\prime}(a)(x-a) \quad \text { for } x \in A
$$

For any $x \in A$ we have

$$
\begin{aligned}
O(x)= & g \circ f(x)-g \circ f(a)-g^{\prime}(f(a)) f^{\prime}(a)(x-a) \\
= & g(f(x))-g(f(a))-g^{\prime}(f(a))(f(x)-f(a)) \\
& \quad+g^{\prime}(f(a))\left[f(x)-f(a)-f^{\prime}(a)(x-a)\right] \\
= & N(f(x))+g^{\prime}(f(a)) M(x) .
\end{aligned}
$$

Suppose $0<\eta<\epsilon$. Since g is differentiable at $f(a)$ there is δ_{g} such that

$$
y \in B \text { and } 0<|y-g(f(a))|<\delta_{g} \Rightarrow|N(y)| \leq \frac{\eta}{2\left(1+\left|f^{\prime}(a)\right|\right)}|y-f(a)| .
$$

Since f is differentiable at a there is δ_{f} such that

$$
a \in A \text { and } 0<|x-a|<\delta_{f} \Rightarrow \text { and }|M(x)| \leq \min \left\{\frac{\eta}{2\left(1+\left|g^{\prime}(f(a))\right|\right.}, 1\right\}|x-a|
$$

Let

$$
\delta=\min \left\{\delta_{f}, \frac{\delta_{g}}{1+\left|f^{\prime}(a)\right|}\right\}
$$

Suppose $x \in A$ and $0<|x-a|<\delta$. Then

$$
|f(x)-f(a)| \leq|M(x)|+\left|f^{\prime}(a)\right||x-a| \leq\left(1+\left|f^{\prime}(a)\right|\right)|x-a|<\delta_{g}
$$

But then

$$
|N(f(x))| \leq \frac{\eta}{2\left(1+\left|f^{\prime}(a)\right|\right)}|f(x)-f(a)| \leq \frac{\eta}{2}|x-a|
$$

and

$$
\left|g^{\prime}(f(a))\right||M(x)| \leq\left|g^{\prime}(f(a))\right| \frac{\eta}{2\left(1+\mid g^{\prime}(f(a))\right) \mid}|x-a| \leq \frac{\eta}{2}|x-a| .
$$

Consequently,

$$
|O(x)| \leq|N(f(x))|+\left|g^{\prime}(f(a))\right||M(x)| \leq \frac{\eta}{2}+\frac{\eta}{2}<\epsilon,
$$

as desired.
Theorem 1.4. (The Intermediate Value Theorem.) Suppose I is an interval in \mathbb{R} and

$$
f: I \rightarrow \mathbb{R}
$$

is continuous. Then $\mathbf{r n g} f$ is an interval.
Proof. This follows immediately from the fact that a subset of \mathbb{R} is connected if and only if it is an interval and that fact that the continuous image of a connected set is connected.

Corollary 1.1. Suppose I is an interval in \mathbb{R} and $f: I \rightarrow \mathbb{R}$ is continuous. Then f is univalent if and only if either f is increasing or f is decreasing. Moreover, if f is univalent then f^{-1} is continuous.

Proof. Exercise for the reader.
Theorem 1.5. Suppose
(i) I is an open interval in $\mathbb{R}, a \in I$ and $f: I \rightarrow \mathbb{R}$ is continuous and univalent;
(ii) $b=f(a), B \subset \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$;
(iii) $M \in \mathbb{R}$ and $\lim _{x \rightarrow a} g(f(x))=M$.

Then $\lim _{y \rightarrow b} g(y)$ exists and equals M.
Proof. Since f is continuous at a, since a is an accumulation point of the domain of $g \circ f$ by (3) and since f is univalent we infer that b is an accumulation point of B.

Let $\epsilon>0$. Choose $\delta>0$ such that $(a-\delta, a+\delta) \subset I$ and

$$
x \in \mathbf{d m n} g \circ f \text { and }|x-a|<\delta \Rightarrow \mid g(f(x)-g(f(a)) \mid<\epsilon .
$$

By virtue of our previous theory, $f[(a-\delta, a+\delta)]$ is an open interval so there is $\eta>0$ such that $(b-\eta, b+\eta) \subset f[(a-\delta, a+\delta)]$. Suppose $|y-b|<\eta$. There is a unique $x \in(a-\delta, a+\delta)$ such that $y=f(x)$. So if $y \in B$ then $|g(y)-M|=$ $|g(f(x))-M|<\epsilon$.

Theorem 1.6. Suppose I is an interval in \mathbb{R},

$$
f: I \rightarrow \mathbb{R}
$$

is continuous and univalent, $a \in \operatorname{int} I, f$ is differentiable at a and $f^{\prime}(a) \neq 0$. Then f^{-1} is differentiable at $f(a)$ and

$$
\left(f^{-1}\right)^{\prime}(f(a))=1 / f^{\prime}(a) .
$$

Proof. Let $J=\{f(x): x \in \operatorname{int} I\}$. By virtue of the preceding theory, J is an open interval. Let

$$
g(y)=\frac{f^{-1}(y)-a}{y-f(a)} \quad \text { for } y \in J \sim\{f(a)\} .
$$

For $x \in I \sim\{a\}$ we have that

$$
g(f(x))=\frac{x-a}{f(x)-f(a)}
$$

has limit $1 / f^{\prime}(a)$ as $x \rightarrow a$. We may now complete the proof by making use of the previous Theorem.

Theorem 1.7. (The Mean Value Theorem.) Suppose $a, b \in \mathbb{R}, a<b$,

$$
f:[a, b] \rightarrow \mathbb{R}
$$

f is continuous and f is differentiable at each point of (a, b). Then there is a point $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

Proof. Define $g:[a, b] \rightarrow \mathbb{R}$ by letting

$$
g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a) \quad \text { for } x \in[a, b]
$$

Note that g is continuous, that $g(a)=0=g(b)$ and that g is differentiable at each point $x \in(a, b)$ with

$$
g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a} .
$$

Since $[a, b]$ is compact, there is some point $\xi_{\max } \in[a, b]$ such that $g(x) \leq g\left(\xi_{\max }\right)$ whenever $x \in[a, b]$ and there is some point $\xi_{\min } \in[a, b]$ such that $g\left(\xi_{\max }\right) \leq g(x)$ whenever $x \in[a, b]$. If g is constant the Theorem holds trivially, so let us assume g is nonconstant. Then at least one of $\xi_{\max }, \xi_{\min }$ is in (a, b) and, by the previous Theorem, is a point where g^{\prime} vanishes.

Corollary 1.2. Suppose $a, b \in \mathbb{R}, a<b, E$ is a normed vector space,

$$
f:[a, b] \rightarrow E,
$$

f is continuous, f is differentiable at each point of $(a, b), 0 \leq M<\infty$ and

$$
\left|f^{\prime}(t)\right| \leq M \quad \text { whenever } t \in(a, b)
$$

Then

$$
|f(b)-f(a)| \leq M(b-a)
$$

Proof. Suppose ω is a bounded real valued linear function on E. Applying the Mean Value Theorem to $\omega \circ f$ we infer that

$$
|\omega(f(b)-f(a))| \leq\|\omega\| M(b-a)
$$

Our assertion now follows from the Hahn-Banach Theorem.
Theorem 1.8. (Taylor's Theorem with Lagrange form for the remainder.) Suppose n is a positive integer, I is an open interval of real numbers,

$$
f: I \rightarrow \mathbb{R}
$$

is $n+1$ times differentiable at each point of I and $a \in I$. Let

$$
P(x)=\sum_{m=0}^{n} \frac{f^{(m)}(a)}{m!}(x-a)^{m} \quad \text { for each } x \in I
$$

Then for each $x \in I \sim\{a\}$ there is a real number ξ strictly between a and x such that

$$
f(x)-P(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}
$$

In particular, if M is a nonnegative real number with the property that

$$
\left|f^{(n+1)}(x)\right| \leq M \quad \text { for each } x \in I
$$

then

$$
|f(x)-P(x)| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for each } x \in I
$$

Proof. Suppose $a<x \in I$; it will be obvious how to modify the proof to hande the case when $x \in I$ and $x<a$.
Lemma 1.1. Suppose $\phi: I \rightarrow \mathbb{R}, \phi$ is $n+1$ times differentiable on $I, \phi^{(m)}(a)=0$ for $0 \leq m \leq n$ and $\phi(x)=0$. Then there is $\xi \in(a, x)$ such that $\phi^{(n+1)}(\xi)=0$.
Proof. Induct on n. The Lemma follows directly from the Mean Value Theorem in case $n=0$. Suppose $n>0$. By the Mean Value Theorem there is $\eta \in(a, x)$ such that $\phi^{\prime}(\eta)=0$. Now apply induction with ϕ and x replaced by ϕ^{\prime} and η.

Let

$$
R(t)=f(t)-P(t) \quad \text { for } t \in I
$$

and let

$$
\phi(t)=R(t)-R(x)\left(\frac{t-a}{x-a}\right)^{n+1} \quad \text { for } t \in I
$$

Evidently, $\phi^{(m)}(a)=0$ for $0 \leq m \leq n$ and $\phi(x)=0$. By the Lemma there is $\xi \in(a, x)$ such that $\phi^{(n+1)}(\xi)=0$. Since

$$
\phi^{(n+1)}(\xi)=f^{(n+1)}(\xi)-(n+1)!R(x)
$$

the Theorem is proved.
Theorem 1.9. Suppose I is a nonempty open interval, $f: I \rightarrow \mathbb{R}$ and f is differentiable at each point of I. Then

$$
\left\{\frac{f(y)-f(x)}{y-x}: x, y \in I \text { and } x \neq y\right\}
$$

is an interval. Moreover $\mathbf{r n g} f^{\prime}$ is an interval.
Proof. Let $U=\{(x, y) \in I \times I: x<y\}$. We define $g: U \rightarrow \mathbb{R}$ by setting

$$
g(x, y)=\frac{f(y)-f(x)}{y-x} \quad \text { for }(x, y) \in U
$$

Since U is connected and g is continuous the range of g is connected and, therefore, an interval. It follows from the Mean Value Theorem that $\mathbf{r n g} g \subset \mathbf{r n g} f^{\prime}$. Since $\mathbf{r n g} f^{\prime} \subset \mathbf{c l} \mathbf{r n g} g$ we find that $\mathbf{r n g} f^{\prime}$ is connected.

