1. DIFFERENTIATION OF VECTOR VALUED FUNCTIONS OF A REAL VARIABLE.

Definition 1.1. Suppose A C R, F is a normed vector space,
f:A— E.
We let
= {(a,m) :a € int A and m = lim f(a:)—f(a)} :

r—a Tr—a
Note that f’ is a function. We say f is differentiable at a if a is in the domain
of f’. For each nonegative integer m we define f(™ by setting () = f, f(1) = f/
and requiring that fm+h = (fm)y/,

Theorem 1.1. Suppose A C R, E is a normed vector space, f : A — E and f is
differentiable at a. Then

lim f(x) = f(a).

T—ra

That is, f is continuous at a.

Proof. We give two proofs. The first use rules for limits and the second uses € and

0.
1st Proof. We have

f@) = Lo o) 4 f0) foraca
Moreover,
tim 2025 _ ) e —a—0 and i f@) = f(o)

It follows from the rules for limits that
lim f(x) = f(a)0+ f(a) = f(a)
2nd Proof. Let € > 0. There is n > 0 such that
f(a)

zeAand0<|z—al<n :>‘f(xx):a—

<1

f'(a)

Let
o= min{ )

Ifze Aand 0 < |z —a| <0 then

@) - 1@ = ({2 @) -0+ e -a)

< ‘f(xa)::c‘]:(a) _fl(a)

< (1 +[f'(a)])]z —al
< €.

|z —al +[f'(a)]]z — a
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Theorem 1.2. Suppose A C R,
fiA=R,
f is differentiable at a and either
f(z) < f(a) whenever x € A
or
f(x) > f(a) whenever z € A.
Then
f'(a)=0.
Remark 1.1. Note that

gof()—gofla) goflx)—gofla)flzx)—fla)
z—a f(x) = f(a) r—a
whenever z € A ~ {a} and f(x) € B ~ {b}.

Proof. Let € > 0. Choose ¢ > 0 such that
f(x) — f(a)

(1) reAand0<|z—al]<d =
r—a

- f(a)] <e

This amounts to
1) = 1) _ @)~ @
T —a

(1) z€eAandO0<|z—a|<d =
xr—a

—e< f'(a) +e.

Suppose f(z) < f(a) whenever z € A. Then (1) amounts to

[(@) - f(a) _ @)= 1)

re€Aand0<|z—al]<d =
r—a

—e< f'(a) +e.

Keeping in mind that a € acc A we choose x € AN(a,a—40) to infer that —e < f'(a)
and choose © € AN(a,a+9) to infer that f'(a) < e. Since € is arbitrary we conclude

that f'(a) = 0.
Suppose f(z) > f(a) whenever z € A. Then (1) amounts to
re€Aand 0< |z —a|<d = f'(a)—e<w<f’(a)+e.

Keeping in mind that a € acc A we choose © € AN(a,a—0) to infer that —e < f/(a)
and choose € AN(a,a+9) to infer that f/(a) < e. Since € is arbitrary we conclude

that f'(a) = 0.
Alternatively, having dealt with one of these cases we can replace f by —f to
handle the other case. (]

Theorem 1.3. (The Chain Rule) Suppose

(i) ae ACR, f: A— R and f is differentiable at a.
(ii) b€ BCR, g: B— R and g is differentiable at b

(iii) b= f(a).
Then g o f is differentiable at a and

(gof)(a) = g'(f(a))f'(a).
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Proof. 1st Proof. Since b € int B there is an open subset V of R such that
b eV C B. Since f is continuous at a there is an open subset U of R such that
a €U and f[ANU] C V. Since a € int A it follows that a € intdmngo f.

Let s : B — R be such that

{“Q%@—yw>ﬁy63amy#b

W=1 if y = b.

Then s is continuous at b. If x € dmngo f and x # a we have

W SUE) e @) ) S0 = @)

T—a T—a T—a
By previous theory,

lim s(f(x)) = s(lim f(2)) = s(f(a) = 0.

T—ra Tr—ra

We complete the proof by letting « — a in (4) and using limit rules. proof.
2nd Proof. Set

O(x) =go f(z) —go f(a) —g'(f(a)f'(a)(w —a) forzeA
Having already shown that a is an interior point of the domain of go f the statement
to be proved is equivalent to

1 250 =0
Set
N(y) = g(y) — 9(f(a)) = ¢'(f(a))(y — f(a)) foryec B
and set

M(z) = f(z) — f(a) — f'(a)(x —a) forx € A.
For any = € A we have

O(x) =go f(z) —go f(a) =g (f(a)f'(a)(x — a)

=g(f(x)) = g(f(
+9'(f(a) [f(z) = fla) = f'(a)(z — a)]
= N(f(2)) + 4 (f(a))M(z).
Suppose 0 < n < €. Since g is differentiable at f(a) there is d, such that
n
y€ Band 0<|y—g(f(a)l <dy = [N(y)| < mw — fa)l.

Since f is differentiable at a there is §¢ such that
: n
acAandO0<|z—al<dr = and |M(z Smln{,l} T —al.
el A 21+ Gy
Let

)
6 =min<{ 6 ,g}.
{f1+ww>
Suppose x € A and 0 < |z — a|] < d. Then
() = f(a)] < [M(2)| + [ (@)llz — al < (1 +[f'(a)])|z — a] < b,
But then

n n
IN(f(2))] < m”(?ﬁ) — fla)| < §|$ — a
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and

9 F@IM @I <19 (Fa) 5y — ol < 1o —al
Consequently,
0@)| < IN(F@)| + g (F@)IM@)] < T+ 3 <,
as desired. ]

Theorem 1.4. (The Intermediate Value Theorem.) Suppose I is an interval
in R and
f:I—=R

is continuous. Then rng f is an interval.

Proof. This follows immediately from the fact that a subset of R is connected if
and only if it is an interval and that fact that the continuous image of a connected
set is connected. O

Corollary 1.1. Suppose [ is an interval in R and f : I — R is continuous. Then
f is univalent if and only if either f is increasing or f is decreasing. Moreover, if f
is univalent then f~! is continuous.

Proof. Exercise for the reader. O

Theorem 1.5. Suppose
(i) Iis an open interval in R, a@ € I and f : I — R is continuous and univalent;
(ii) b= f(a), BCRand g: B—=R;
(i) M € R and lim,_,, g(f(x)) = M.
Then lim,_,; g(y) exists and equals M.

Proof. Since f is continuous at a, since a is an accumulation point of the domain
of go f by (3) and since f is univalent we infer that b is an accumulation point of
B.

Let € > 0. Choose 6 > 0 such that (a — d,a + ) C I and

ze€dmngo fand |z —a| <d = |g(f(x) —g(f(a))] <e.

By virtue of our previous theory, f[(a — d,a + )] is an open interval so there is
n > 0 such that (b —n,b6+n) C f[(a — d,a + 0)]. Suppose |y — b| < n. There is
a unique x € (a — d,a + §) such that y = f(x). So if y € B then |g(y) — M| =
lg(f(x)) — M| < e 0

Theorem 1.6. Suppose [ is an interval in R,
f:I—R

is continuous and univalent, a € int I, f is differentiable at a and f’(a) # 0. Then
f~1 is differentiable at f(a) and

(f=) (f(@) =1/ (a).

Proof. Let J ={f(x) : z € int I'}. By virtue of the preceding theory, J is an open
interval. Let
[ y)—a

v (@) forye J~{f(a)}.

9(y) =



For x € I ~ {a} we have that

T —a
9(f(@)) = 75—~
S (R ()
has limit 1/f'(a) as * — a. We may now complete the proof by making use of the
previous Theorem. ([

Theorem 1.7. (The Mean Value Theorem.) Suppose a,b € R, a < b,
fla,b] =R,

f is continuous and f is differentiable at each point of (a,b). Then there is a point
¢ € (a,b) such that

1oy J(0) — fla)
P& ===
Proof. Define g : [a,b] — R by letting
f(b) = f(a)

(x —a) for z € a,b)].

o() = () — fla) - "0

Note that g is continuous, that g(a) = 0 = g(b) and that g is differentiable at each
point x € (a,b) with

g() = 1) - TU T

Since [a, b] is compact, there is some point &4, € [a, b] such that g(x) < g(§maz)
whenever x € [a,b] and there is some point &min € [a,b] such that g(&maz) < g(x)
whenever x € [a,b]. If g is constant the Theorem holds trivially, so let us assume
¢ is nonconstant. Then at least one of &az, Emin 1S in (a,b) and, by the previous
Theorem, is a point where ¢’ vanishes. ([l
Corollary 1.2. Suppose a,b € R, a < b, E is a normed vector space,
f:a b = E,
f is continuous, f is differentiable at each point of (a,b), 0 < M < oo and
|f'(t)| < M whenever t € (a,b).
Then
[f(b) = f(a)] < M(b—a).

Proof. Suppose w is a bounded real valued linear function on E. Applying the
Mean Value Theorem to w o f we infer that

w(f(0) = f(a)] < [lw]|M (b — a).

Our assertion now follows from the Hahn-Banach Theorem. O

Theorem 1.8. (Taylor’s Theorem with Lagrange form for the remainder.)
Suppose n is a positive integer, I is an open interval of real numbers,

f:I—=-R
is n + 1 times differentiable at each point of I and a € I. Let

P(z) = i /™(a) (r—a)™ for each z € I.
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Then for each x € I ~ {a} there is a real number ¢ strictly between a and z such
that (1)
— f " (6) n+1
f(z) — P(z) = m(xfa) :
In particular, if M is a nonnegative real number with the property that
|f" D (z)] < M foreachz el

then
M

(n+1)!
Proof. Suppose a < x € I; it will be obvious how to modify the proof to hande the
case when z € I and z < a.

|z — a|" T for each z € I.

[f(z) = P(z)] <

Lemma 1.1. Suppose ¢ : I — R, ¢ is n + 1 times differentiable on I, ("™ (a) =0
for 0 < m < n and ¢(x) = 0. Then there is £ € (a,z) such that ¢+ (&) = 0.

Proof. Induct on n. The Lemma follows directly from the Mean Value Theorem in
case n = 0. Suppose n > 0. By the Mean Value Theorem there is n € (a,z) such
that ¢'(n) = 0. Now apply induction with ¢ and x replaced by ¢’ and 7. O

Let
R(t) = f(t)— P(t) fortel
and let

é(1) = R(t) — R(x) (t - “)HH fort € 1.

r—a
Evidently, ¢(™)(a) = 0 for 0 < m < n and ¢(x) = 0. By the Lemma there is
¢ € (a,z) such that ¢("*1) (&) = 0. Since

¢tV (E) = fUHD(E) = (n + 1)IR(x)
the Theorem is proved. (I

Theorem 1.9. Suppose [ is a nonempty open interval, f : I — R and f is differ-
entiable at each point of I. Then

fly) = fx)
y—x
is an interval. Moreover rng f’ is an interval.

Proof. Let U ={(z,y) € I x I :x <y}. We define g : U — R by setting
fly) = f(=)
y—x
Since U is connected and g is continuous the range of g is connected and, therefore,

an interval. It follows from the Mean Value Theorem that rngg C rng f’. Since
rng ' C clrng g we find that rng f’ is connected. O

:x,yEIandz#y}

g(z,y) = for (z,y) € U.



