
1. Differentiation of vector valued functions of a real variable.

Definition 1.1. Suppose A ⊂ R, E is a normed vector space,

f : A → E.

We let

f ′ =

{
(a,m) : a ∈ intA and m = lim

x→a

f(x)− f(a)

x− a

}
.

Note that f ′ is a function. We say f is differentiable at a if a is in the domain
of f ′. For each nonegative integer m we define f (m) by setting f (0) = f , f (1) = f ′

and requiring that f (m+1) = (f (m))′.

Theorem 1.1. Suppose A ⊂ R, E is a normed vector space, f : A → E and f is
differentiable at a. Then

lim
x→a

f(x) = f(a).

That is, f is continuous at a.

Proof. We give two proofs. The first use rules for limits and the second uses ϵ and
δ.

1st Proof. We have

f(x) = (
f(x)− f(a)

x− a
)(x− a) + f(a) for a ∈ A.

Moreover,

lim
x→a

f(x)− f(a)

x− a
= f ′(a), lim

x→a
x− a = 0 and lim

x→a
f(a) = f(a).

It follows from the rules for limits that

lim
x→a

f(x) = f ′(a)0 + f(a) = f(a).

2nd Proof. Let ϵ > 0. There is η > 0 such that

x ∈ A and 0 < |x− a| < η ⇒
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ ≤ 1.

Let

δ = min

{
ϵ

1 + |f ′(a)|
, η

}
.

If x ∈ A and 0 < |x− a| < δ then

|f(x)− f(a)| =
(
f(x)− f(a)

x− a
− f ′(a)

)
(x− a) + f ′(a)(x− a)

≤
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ |x− a|+ |f ′(a)||x− a|

≤ (1 + |f ′(a)|)|x− a|
< ϵ.

□
1
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Theorem 1.2. Suppose A ⊂ R,

f : A → R,

f is differentiable at a and either

f(x) ≤ f(a) whenever x ∈ A

or

f(x) ≥ f(a) whenever x ∈ A.

Then

f ′(a) = 0.

Remark 1.1. Note that

g ◦ f(x)− g ◦ f(a)
x− a

=
g ◦ f(x)− g ◦ f(a)

f(x)− f(a)

f(x)− f(a)

x− a

whenever x ∈ A ∼ {a} and f(x) ∈ B ∼ {b}.

Proof. Let ϵ > 0. Choose δ > 0 such that

(1) x ∈ A and 0 < |x− a| < δ ⇒
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < ϵ.

This amounts to

(1) x ∈ A and 0 < |x− a| < δ ⇒ f(x)− f(a)

x− a
− ϵ < f ′(a) <

f(x)− f(a)

x− a
+ ϵ.

Suppose f(x) ≤ f(a) whenever x ∈ A. Then (1) amounts to

x ∈ A and 0 < |x− a| < δ ⇒ f(x)− f(a)

x− a
− ϵ < f ′(a) <

f(x)− f(a)

x− a
+ ϵ.

Keeping in mind that a ∈ accA we choose x ∈ A∩(a, a−δ) to infer that −ϵ < f ′(a)
and choose x ∈ A∩(a, a+δ) to infer that f ′(a) < ϵ. Since ϵ is arbitrary we conclude
that f ′(a) = 0.

Suppose f(x) ≥ f(a) whenever x ∈ A. Then (1) amounts to

x ∈ A and 0 < |x− a| < δ ⇒ f ′(a)− ϵ <
f(x)− f(a)

x− a
< f ′(a) + ϵ.

Keeping in mind that a ∈ accA we choose x ∈ A∩(a, a−δ) to infer that −ϵ < f ′(a)
and choose x ∈ A∩(a, a+δ) to infer that f ′(a) < ϵ. Since ϵ is arbitrary we conclude
that f ′(a) = 0.

Alternatively, having dealt with one of these cases we can replace f by −f to
handle the other case. □

Theorem 1.3. (The Chain Rule) Suppose

(i) a ∈ A ⊂ R, f : A → R and f is differentiable at a.
(ii) b ∈ B ⊂ R, g : B → R and g is differentiable at b
(iii) b = f(a).

Then g ◦ f is differentiable at a and

(g ◦ f)′(a) = g′(f(a))f ′(a).
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Proof. 1st Proof. Since b ∈ intB there is an open subset V of R such that
b ∈ V ⊂ B. Since f is continuous at a there is an open subset U of R such that
a ∈ U and f [A ∩ U ] ⊂ V . Since a ∈ intA it follows that a ∈ intdmn g ◦ f .

Let s : B → R be such that

s(y) =

{
g(y)−g(b)

y−b − g′(b) if y ∈ B and y ̸= b

0 if y = b.

Then s is continuous at b. If x ∈ dmn g ◦ f and x ̸= a we have

(4)
g(f(x))− g(f(a))

x− a
= g′(f(a))

f(x)− f(a)

x− a
+ s(f(x))

f(x)− f(a)

x− a
.

By previous theory,

lim
x→a

s(f(x)) = s( lim
x→a

f(x)) = s(f(a) = 0.

We complete the proof by letting x → a in (4) and using limit rules. proof.
2nd Proof. Set

O(x) = g ◦ f(x)− g ◦ f(a)− g′(f(a))f ′(a)(x− a) for x ∈ A.

Having already shown that a is an interior point of the domain of g◦f the statement
to be proved is equivalent to

lim
x→a

O(x)

x− a
= 0.

Set

N(y) = g(y)− g(f(a))− g′(f(a))(y − f(a)) for y ∈ B

and set

M(x) = f(x)− f(a)− f ′(a)(x− a) for x ∈ A.

For any x ∈ A we have

O(x) = g ◦ f(x)− g ◦ f(a)− g′(f(a))f ′(a)(x− a)

= g(f(x))− g(f(a))− g′(f(a))(f(x)− f(a))

+ g′(f(a)) [f(x)− f(a)− f ′(a)(x− a)]

= N(f(x)) + g′(f(a))M(x).

Suppose 0 < η < ϵ. Since g is differentiable at f(a) there is δg such that

y ∈ B and 0 < |y − g(f(a))| < δg ⇒ |N(y)| ≤ η

2(1 + |f ′(a)|)
|y − f(a)|.

Since f is differentiable at a there is δf such that

a ∈ A and 0 < |x− a| < δf ⇒ and |M(x)| ≤ min

{
η

2(1 + |g′(f(a))|
, 1

}
|x− a|.

Let

δ = min

{
δf ,

δg
1 + |f ′(a)|

}
.

Suppose x ∈ A and 0 < |x− a| < δ. Then

|f(x)− f(a)| ≤ |M(x)|+ |f ′(a)||x− a| ≤ (1 + |f ′(a)|)|x− a| < δg.

But then

|N(f(x))| ≤ η

2(1 + |f ′(a)|)
|f(x)− f(a)| ≤ η

2
|x− a|
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and

|g′(f(a))||M(x)| ≤ |g′(f(a))| η

2(1 + |g′(f(a)))|
|x− a| ≤ η

2
|x− a|.

Consequently,

|O(x)| ≤ |N(f(x))|+ |g′(f(a))||M(x)| ≤ η

2
+

η

2
< ϵ,

as desired. □

Theorem 1.4. (The Intermediate Value Theorem.) Suppose I is an interval
in R and

f : I → R
is continuous. Then rng f is an interval.

Proof. This follows immediately from the fact that a subset of R is connected if
and only if it is an interval and that fact that the continuous image of a connected
set is connected. □

Corollary 1.1. Suppose I is an interval in R and f : I → R is continuous. Then
f is univalent if and only if either f is increasing or f is decreasing. Moreover, if f
is univalent then f−1 is continuous.

Proof. Exercise for the reader. □

Theorem 1.5. Suppose

(i) I is an open interval in R, a ∈ I and f : I → R is continuous and univalent;
(ii) b = f(a), B ⊂ R and g : B → R;
(iii) M ∈ R and limx→a g(f(x)) = M .

Then limy→b g(y) exists and equals M .

Proof. Since f is continuous at a, since a is an accumulation point of the domain
of g ◦ f by (3) and since f is univalent we infer that b is an accumulation point of
B.

Let ϵ > 0. Choose δ > 0 such that (a− δ, a+ δ) ⊂ I and

x ∈ dmn g ◦ f and |x− a| < δ ⇒ |g(f(x)− g(f(a))| < ϵ.

By virtue of our previous theory, f [(a − δ, a + δ)] is an open interval so there is
η > 0 such that (b − η, b + η) ⊂ f [(a − δ, a + δ)]. Suppose |y − b| < η. There is
a unique x ∈ (a − δ, a + δ) such that y = f(x). So if y ∈ B then |g(y) − M | =
|g(f(x))−M | < ϵ. □

Theorem 1.6. Suppose I is an interval in R,

f : I → R

is continuous and univalent, a ∈ int I,f is differentiable at a and f ′(a) ̸= 0. Then
f−1 is differentiable at f(a) and

(f−1)′(f(a)) = 1/f ′(a).

Proof. Let J = {f(x) : x ∈ int I}. By virtue of the preceding theory, J is an open
interval. Let

g(y) =
f−1(y)− a

y − f(a)
for y ∈ J ∼ {f(a)}.



5

For x ∈ I ∼ {a} we have that

g(f(x)) =
x− a

f(x)− f(a)

has limit 1/f ′(a) as x → a. We may now complete the proof by making use of the
previous Theorem. □

Theorem 1.7. (The Mean Value Theorem.) Suppose a, b ∈ R, a < b,

f : [a, b] → R,

f is continuous and f is differentiable at each point of (a, b). Then there is a point
ξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
.

Proof. Define g : [a, b] → R by letting

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a) for x ∈ [a, b].

Note that g is continuous, that g(a) = 0 = g(b) and that g is differentiable at each
point x ∈ (a, b) with

g′(x) = f ′(x)− f(b)− f(a)

b− a
.

Since [a, b] is compact, there is some point ξmax ∈ [a, b] such that g(x) ≤ g(ξmax)
whenever x ∈ [a, b] and there is some point ξmin ∈ [a, b] such that g(ξmax) ≤ g(x)
whenever x ∈ [a, b]. If g is constant the Theorem holds trivially, so let us assume
g is nonconstant. Then at least one of ξmax, ξmin is in (a, b) and, by the previous
Theorem, is a point where g′ vanishes. □

Corollary 1.2. Suppose a, b ∈ R, a < b, E is a normed vector space,

f : [a, b] → E,

f is continuous, f is differentiable at each point of (a, b), 0 ≤ M < ∞ and

|f ′(t)| ≤ M whenever t ∈ (a, b).

Then

|f(b)− f(a)| ≤ M(b− a).

Proof. Suppose ω is a bounded real valued linear function on E. Applying the
Mean Value Theorem to ω ◦ f we infer that

|ω(f(b)− f(a))| ≤ ||ω||M(b− a).

Our assertion now follows from the Hahn-Banach Theorem. □

Theorem 1.8. (Taylor’s Theorem with Lagrange form for the remainder.)
Suppose n is a positive integer, I is an open interval of real numbers,

f : I → R

is n+ 1 times differentiable at each point of I and a ∈ I. Let

P (x) =
n∑

m=0

f (m)(a)

m!
(x− a)m for each x ∈ I.
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Then for each x ∈ I ∼ {a} there is a real number ξ strictly between a and x such
that

f(x) − P (x) =
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1.

In particular, if M is a nonnegative real number with the property that

|f (n+1)(x)| ≤ M for each x ∈ I

then

|f(x)− P (x)| ≤ M

(n+ 1)!
|x− a|n+1 for each x ∈ I.

Proof. Suppose a < x ∈ I; it will be obvious how to modify the proof to hande the
case when x ∈ I and x < a.

Lemma 1.1. Suppose ϕ : I → R, ϕ is n+ 1 times differentiable on I, ϕ(m)(a) = 0
for 0 ≤ m ≤ n and ϕ(x) = 0. Then there is ξ ∈ (a, x) such that ϕ(n+1)(ξ) = 0.

Proof. Induct on n. The Lemma follows directly from the Mean Value Theorem in
case n = 0. Suppose n > 0. By the Mean Value Theorem there is η ∈ (a, x) such
that ϕ′(η) = 0. Now apply induction with ϕ and x replaced by ϕ′ and η. □

Let
R(t) = f(t)− P (t) for t ∈ I

and let

ϕ(t) = R(t)−R(x)

(
t− a

x− a

)n+1

for t ∈ I.

Evidently, ϕ(m)(a) = 0 for 0 ≤ m ≤ n and ϕ(x) = 0. By the Lemma there is
ξ ∈ (a, x) such that ϕ(n+1)(ξ) = 0. Since

ϕ(n+1)(ξ) = f (n+1)(ξ)− (n+ 1)!R(x)

the Theorem is proved. □
Theorem 1.9. Suppose I is a nonempty open interval, f : I → R and f is differ-
entiable at each point of I. Then{

f(y)− f(x)

y − x
: x, y ∈ I and x ̸= y

}
is an interval. Moreover rng f ′ is an interval.

Proof. Let U = {(x, y) ∈ I × I : x < y}. We define g : U → R by setting

g(x, y) =
f(y)− f(x)

y − x
for (x, y) ∈ U .

Since U is connected and g is continuous the range of g is connected and, therefore,
an interval. It follows from the Mean Value Theorem that rng g ⊂ rng f ′. Since
rng f ′ ⊂ cl rng g we find that rng f ′ is connected. □


