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UNDEFINED CONTROL SEQUENCES

1. Hölder’s Inequality and Minkowski’s inequality.

We fix p, q ∈ [1,∞] such that

1

p
+

1

q
= 1.

Definition 1.1. Suppose f : Rn → R is Lebesgue measurable. We let

||f ||p =

(∫
|f(x)|p dx

)1/p

if p < ∞

and we let

||f ||∞ = sup{t ∈ (0,∞) : Lebn({|f | > t}) > 0}.

Proposition 1.1. Suppose f : Rn → R is Lebesgue measurable and c ∈ R. Then

||cf ||p = |c|||f ||p.

Proof. Exercise for the reader. □

Theorem 1.1. (Hölder’s Inequality.) Suppose f, g : Rn → R are Lebesgue
measurable. Then

||fg||1 ≤ ||f ||p||g||q.

Proof. Exercise for the reader. Here are some hints. Treat the case p = ∞ or
q = ∞ by a straightforward argument. When p < ∞ and q < ∞ first reduce to the
case ||f ||p = 1 and ||g||q = 1 by making use of the previous Proposition; then apply
the inequality

a1/pb1/q ≤ 1

p
a+

1

q
b for a, b ∈ (0,∞).

□

Theorem 1.2. Minkowski’s Inequality. Suppose f, g : Rn → R are Lebesgue
measurable. Then

||f + g||p ≤ ||f ||p + ||g||p.

Proof. Exercise for the reader. Here are some hints. The cases p = 1 and p = ∞
follow from the triangle inequality. In case 1 < p < ∞ apply Hölder’s Inequality to
|f + g|p ≤ |f + g|p−1(|f |+ |g|). □

1.1. An extension of Hölder’s Inequality. Suppose p, q, r ∈ [0,∞] and

1

p
+

1

q
=

1

r
.

Theorem 1.3. Suppose f, g : Rn → R are Lebesgue measurable. Then

||fg||r ≤ ||f ||p||g||q.

Proof. Exercise for the reader. It easily reduces to the Hölder Inequality. □
1



2

1.2. Minkowski’s inequality in integral form.

Theorem 1.4. (Minkowski’s inequality in integral form.) Suppose f : R ×
R → R is Lebesgue measurable and 1 ≤ p < ∞. Then(∫ ∣∣∣∣∫ h(x, y) dy

∣∣∣∣ dx)1/p

≤
∫ (∫

|h(x, y)|p dx
)1/p

dy.

Proof. By an approximation argument we need only consider h of the form

h(x, y) =
N∑
j=1

fj(x)1Fj (y), (x, y) ∈ R× R,

where N is a positive integer; fj is Lebesgue measurable; and Fj ∈, j = 1, . . . , N ;
and Fi ∩ Fj = ∅ if 1 ≤ i < j ≤ N . We use Minkowski’s inequality to estimate(∫ ∣∣∣∣∫ h(x, y) dy

∣∣∣∣ dx)1/p

=

∣∣∣∣∣∣
N∑
j=1

||Fj ||fj(x)

∣∣∣∣∣∣
p

dx

1/p

≤
N∑
j=1

||Fj ||
(∫

|fj(x)|p dx
)1/p

.

But∫ (∫
|h(x, y)|p dx

)1/p

dy =
N∑
j=1

∫
Fj

(∫
|h(x, y)|p dx

)1/p

=
N∑
j=1

∫
Fj

(∫
|fj(x)|p dx

)1/p

.

□

2. Convolution and other stuff.

Definition 2.1. Whenever X is a set, f is a function with domain X and P is a
permutation of X we let

Pf = f ◦ P−1;

thus if Q is another permutation of X then

(P ◦Q)f = P (Qf).

Definition 2.2. For each a ∈ Rn let

τa : Rn → Rn,

translation by a, be such that

τa(x) = x+ a.

Evidently,

τ−1
a = τ−a

and

τa ◦ τb = τa+b for b ∈ Rn.

Proposition 2.1. Suppose a ∈ Rn.
If f ∈ n then

f ∈ Leb+
n ⇔ τaf ∈ Leb+

in which case l(f) = l(τaf).
If f ∈ n then

f ∈ Lebn ⇔ τaf ∈ Leb

in which case L(f) = L(τaf).
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Proof. Exercise for the reader. Proceed as follows. First, show that ||τa[R]|| = ||R||
whenever R is a rectangle. Second, show that In(τas) = In(s) whenever s ∈ n
and that n(τas) = n(s) whenever s ∈ n. Lastly, approximate f above by s ∈ n if
f ∈ Leb+

n and by s ∈ n if f ∈ Lebn. □

Definition 2.3. Whenever f, g ∈ Leb+
n we define

f ∗ g ∈ Lebn

by letting

f ∗ g(x) =
∫

f(x− y)g(y) dy for x ∈ Rn.

We say the pair (f, g) ∈ n× n of functions on Rn is admissible if f and g are
Lebesgue measurable and

Leb
n({|f | ∗ |g| = ∞}) = 0

in which case we define

f ∗ g : Rn → R

by letting

f ∗ g(x) =

{∫
f(x− y)g(y) dy if |f | ∗ |g|(x) < ∞,

0 else.

Proposition 2.2. Suppose f, g ∈ Leb+
n . Then the following statements hold.

(ii) f ∗ g = g ∗ f ;
(iii) f ∗ (g ∗ h) = (f ∗ g) ∗ h;
(iv) if a ∈ Rn then

(τaf) ∗ g = τa(f ∗ g) = f ∗ (τag).

Proof. Exercise for the reader. Use Tonelli’s Theorem and Proposition ??. □

Proposition 2.3. Suppose f, g, h ∈ Lebn. Then the following statements hold.

(i) (f, g) is admissible;
(ii) f ∗ g ∈ Lebn and f ∗ g = g ∗ f almost everywhere;
(iii) f ∗ (g ∗ h) = (f ∗ g) ∗ h almost everywhere;
(iv) if a ∈ Rn then

(τaf) ∗ g = τa(f ∗ g) = f ∗ (τag) almost everywhere.

Proof. Exercise for the reader. Use Tonelli’s Theorem and Proposition ?? to show
that (f, g) is admissible. You could also peak at the proof of the next Theorem. □

Theorem 2.1. Suppose f and g are Lebesgue measurable, ||f ||p < ∞ and ||g||1 <
∞. Then (f, g) is admissible and

||f ∗ g||p ≤ ||f ||p||g||1.
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Proof. Using Minkowski’s Inequality in integral form we estimate

||f ∗ g||p =

(∫ ∣∣∣∣∫ f(x− y)g(y) dy

∣∣∣∣p dx

)1/p

≤
∫ (∫

|f(x− y)g(y)|p dx
)1/p

dy

=

∫ (∫
|f(x− y)|p dx

)1/p

|g(y)| dy

=

∫ (∫
|f(x)|p dx

)1/p

|g(y)| dy

= ||f ||p||g||1.

□

Proposition 2.4. Suppose 1 ≤ p < ∞, f is Lebesgue measurable and

||f ||p < ∞.

Then for each ϵ > 0 there is an elementary function s such that ||f − s||p < ϵ.

Proof. Let ϵ > 0.
For each positive integer ν let Eν = {x ∈ Rn : |f(x)| ≤ ν}. Since 1Eν |f |p ↑ |f |p

as ν ↑ ∞ we infer from the Monotone Convergence Theorem and the additivity of
the integral that ∫

Eν

|f(x)|p dx ↑
∫

|f(x)|p dx as ν ↑ ∞.

By the additivity of the integral we infer that

||f − 1Eνf ||pp =

∫
Rn∼Eν

|f(x)|p dx =

∫
|f(x)|p dx−

∫
Eν

|f(x)|p dx ↓ 0 as ν ↑ ∞.

We may therefore choose a positive integer N such that ||f − 1EN f ||p ≤ ϵ/2.
Since f1EN

∈ Leb1 we may choose an elementary function s such that |s| ≤ N and

(2N)p
∫

|f1EN
− s|(x) dx ≤

( ϵ

2

)p

.

Then

||f1EN
− s||pp =

∫
|f1EN

− s|p dx ≤ (2M)p
∫

|f1EN
− s| dx ≤

( ϵ

2

)p

.

It follows from Minkowski’s Inequality that

||f − s||p ≤ ||f − 1EN f ||p + ||1EN f − s||p ≤ ϵ

2
+

ϵ

2
= ϵ.

□

2.1. Smoothing. Let

ϕ : Rn → R
be a smooth function such that

(i) 0 ≤ ϕ;
(ii) cl {ϕ ̸= 0} ⊂ {x ∈ Rn : |x| < 1};
(iii)

∫
ϕ(x) dx = 1.
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For each ϵ > 0 we let

ϕϵ(x) = ϵ−nϕ
(
ϵ−1x

)
for x ∈ Rn.

Then

(i) 0 ≤ ϕϵ;
(ii) cl {x ∈ Rn : ϕϵ(x) ̸= 0} ⊂ {x ∈ Rn : |x| < ϵ};

s(iii)
∫
ϕϵ(x) dx = 1.

Theorem 2.2. Suppose 1 ≤ p < ∞ and f is measurable and∫
|f(x)|p dx < ∞.

Then ϕϵ ∗ f is smooth and

||f − ϕϵ ∗ f ||p → 0 as ϵ ↓ 0.

Proof. Let η > 0 and let s be a elementary function such that ||f − s||p < η/3.
Then

||f − ϕϵ ∗ f ||p ≤ ||f − s||p + ||s− ϕ ∗ s||p + ||ϕϵ ∗ (f − s)||p < 2η + ||s− ϕ ∗ s||p.
Finally, as s is elementary, ||s− ϕϵ ∗ s||p → 0 as ϵ ↓ 0. (Do you see why?) □


