## 1. Hölder's Inequality and Minkowski's inequality.

We fix $p, q \in[1, \infty]$ such that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Definition 1.1. Suppose $f: \mathbb{R} n \rightarrow \mathbb{R}$ is Lebesgue measurable. We let

$$
\|f\|_{p}=\left(\int|f(x)|^{p} d x\right)^{1 / p} \quad \text { if } p<\infty
$$

and we let

$$
\|f\|_{\infty}=\sup \left\{t \in(0, \infty): \mathbb{L}_{\mathbb{C}}{ }^{n}(\{|f|>t\})>0\right\}
$$

Proposition 1.1. Suppose $f: \mathbb{R} n \rightarrow \mathbb{R}$ is Lebesgue measurable and $c \in \mathbb{R}$. Then

$$
\|c f\|_{p}=|c|\|f\|_{p}
$$

Proof. Exercise for the reader.
Theorem 1.1. (Hölder's Inequality.) Suppose $f, g: \mathbb{R} n \rightarrow \mathbb{R}$ are Lebesgue measurable. Then

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

Proof. Exercise for the reader. Here are some hints. Treat the case $p=\infty$ or $q=\infty$ by a straightforward argument. When $p<\infty$ and $q<\infty$ first reduce to the case $\|f\|_{p}=1$ and $\|g\|_{q}=1$ by making use of the previous Proposition; then apply the inequality

$$
a^{1 / p} b^{1 / q} \leq \frac{1}{p} a+\frac{1}{q} b \quad \text { for } a, b \in(0, \infty)
$$

Theorem 1.2. Minkowski's Inequality. Suppose $f, g: \mathbb{R} n \rightarrow \mathbb{R}$ are Lebesgue measurable. Then

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Proof. Exercise for the reader. Here are some hints. The cases $p=1$ and $p=\infty$ follow from the triangle inequality. In case $1<p<\infty$ apply Hölder's Inequality to $|f+g|^{p} \leq|f+g|^{p-1}(|f|+|g|)$.
1.1. An extension of Hölder's Inequality. Suppose $p, q, r \in[0, \infty]$ and

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{r}
$$

Theorem 1.3. Suppose $f, g: \mathbb{R} n \rightarrow \mathbb{R}$ are Lebesgue measurable. Then

$$
\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q} .
$$

Proof. Exercise for the reader. It easily reduces to the Hölder Inequality.
1.2. Minkowski's inequality in integral form.

Theorem 1.4. (Minkowski's inequality in integral form.) Suppose $f: \mathbb{R} \times$ $\mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue measurable and $1 \leq p<\infty$. Then

$$
\left(\int\left|\int h(x, y) d y\right| d x\right)^{1 / p} \leq \int\left(\int|h(x, y)|^{p} d x\right)^{1 / p} d y
$$

Proof. By an approximation argument we need only consider $h$ of the form

$$
h(x, y)=\sum_{j=1}^{N} f_{j}(x) 1_{F_{j}}(y), \quad(x, y) \in \mathbb{R} \times \mathbb{R}
$$

where $N$ is a positive integer; $f_{j}$ is Lebesgue measurable; and $F_{j} \in, j=1, \ldots, N$; and $F_{i} \cap F_{j}=\emptyset$ if $1 \leq i<j \leq N$. We use Minkowski's inequality to estimate
$\left(\int\left|\int h(x, y) d y\right| d x\right)^{1 / p}=\left(\left|\sum_{j=1}^{N}\left\|F_{j}\right\| f_{j}(x)\right|^{p} d x\right)^{1 / p} \leq \sum_{j=1}^{N}\left\|F_{j}\right\|\left(\int\left|f_{j}(x)\right|^{p} d x\right)^{1 / p}$.
But
$\int\left(\int|h(x, y)|^{p} d x\right)^{1 / p} d y=\sum_{j=1}^{N} \int_{F_{j}}\left(\int|h(x, y)|^{p} d x\right)^{1 / p}=\sum_{j=1}^{N} \int_{F_{j}}\left(\int\left|f_{j}(x)\right|^{p} d x\right)^{1 / p}$.

## 2. Convolution and other stuff.

Definition 2.1. Whenever $X$ is a set, $f$ is a function with domain $X$ and $P$ is a permutation of $X$ we let

$$
P f=f \circ P^{-1}
$$

thus if $Q$ is another permutation of $X$ then

$$
(P \circ Q) f=P(Q f)
$$

Definition 2.2. For each $a \in \mathbb{R} n$ let

$$
\tau_{a}: \mathbb{R} n \rightarrow \mathbb{R} n
$$

translation by $a$, be such that

$$
\tau_{a}(x)=x+a
$$

Evidently,

$$
\tau_{a}^{-1}=\tau_{-a}
$$

and

$$
\tau_{a} \circ \tau_{b}=\tau_{a+b} \quad \text { for } b \in \mathbb{R} n
$$

Proposition 2.1. Suppose $a \in \mathbb{R} n$.
If $f \in n$ then

$$
f \in \mathbf{L e b}_{n}^{+} \Leftrightarrow \tau_{a} f \in \mathbf{L e b}^{+}
$$

in which case $\mathbf{l}(f)=\mathbf{l}\left(\tau_{a} f\right)$.
If $f \in n$ then

$$
f \in \mathbf{L e b}_{n} \Leftrightarrow \tau_{a} f \in \mathbf{L e b}
$$

in which case $\mathbf{L}(f)=\mathbf{L}\left(\tau_{a} f\right)$.

Proof. Exercise for the reader. Proceed as follows. First, show that $\left\|\tau_{a}[R]\right\|=\|R\|$ whenever $R$ is a rectangle. Second, show that $\mathbb{I}_{n}\left(\tau_{a} s\right)=\mathbb{I}_{n}(s)$ whenever $s \in n$ and that $n\left(\tau_{a} s\right)=n(s)$ whenever $s \in n$. Lastly, approximate $f$ above by $s \in n$ if $f \in \mathbf{L e b}_{n}^{+}$and by $s \in n$ if $f \in \mathbf{L e b}_{n}$.

Definition 2.3. Whenever $f, g \in \mathbf{L e b}_{n}^{+}$we define

$$
f * g \in \mathbf{L e b}_{n}
$$

by letting

$$
f * g(x)=\int f(x-y) g(y) d y \quad \text { for } x \in \mathbb{R} n
$$

We say the pair $(f, g) \in n \times n$ of functions on $\mathbb{R} n$ is admissible if $f$ and $g$ are Lebesgue measurable and

$$
\mathbb{L e b b}^{n}(\{|f| *|g|=\infty\})=0
$$

in which case we define

$$
f * g: \mathbb{R} n \rightarrow \mathbb{R}
$$

by letting

$$
f * g(x)= \begin{cases}\int f(x-y) g(y) d y & \text { if }|f| *|g|(x)<\infty \\ 0 & \text { else. }\end{cases}
$$

Proposition 2.2. Suppose $f, g \in \mathbf{L e b}_{n}^{+}$. Then the following statements hold.
(ii) $f * g=g * f$;
(iii) $f *(g * h)=(f * g) * h$;
(iv) if $a \in \mathbb{R} n$ then

$$
\left(\tau_{a} f\right) * g=\tau_{a}(f * g)=f *\left(\tau_{a} g\right)
$$

Proof. Exercise for the reader. Use Tonelli's Theorem and Proposition ??.
Proposition 2.3. Suppose $f, g, h \in \mathbf{L e b}_{n}$. Then the following statements hold.
(i) $(f, g)$ is admissible;
(ii) $f * g \in \mathbf{L e b}_{n}$ and $f * g=g * f$ almost everywhere;
(iii) $f *(g * h)=(f * g) * h$ almost everywhere;
(iv) if $a \in \mathbb{R} n$ then

$$
\left(\tau_{a} f\right) * g=\tau_{a}(f * g)=f *\left(\tau_{a} g\right) \quad \text { almost everywhere. }
$$

Proof. Exercise for the reader. Use Tonelli's Theorem and Proposition ?? to show that $(f, g)$ is admissible. You could also peak at the proof of the next Theorem.

Theorem 2.1. Suppose $f$ and $g$ are Lebesgue measurable, $\|f\|_{p}<\infty$ and $\|g\|_{1}<$ $\infty$. Then $(f, g)$ is admissible and

$$
\|f * g\|_{p} \leq\|f\|_{p}\|g\|_{1}
$$

Proof. Using Minkowski's Inequality in integral form we estimate

$$
\begin{aligned}
\|f * g\|_{p} & =\left(\int\left|\int f(x-y) g(y) d y\right|^{p} d x\right)^{1 / p} \\
& \leq \int\left(\int|f(x-y) g(y)|^{p} d x\right)^{1 / p} d y \\
& =\int\left(\int|f(x-y)|^{p} d x\right)^{1 / p}|g(y)| d y \\
& =\int\left(\int|f(x)|^{p} d x\right)^{1 / p}|g(y)| d y \\
& =\|f\|_{p}\|g\|_{1} .
\end{aligned}
$$

Proposition 2.4. Suppose $1 \leq p<\infty, f$ is Lebesgue measurable and

$$
\|f\|_{p}<\infty .
$$

Then for each $\epsilon>0$ there is an elementary function $s$ such that $\|f-s\|_{p}<\epsilon$.
Proof. Let $\epsilon>0$.
For each positive integer $\nu$ let $E_{\nu}=\left\{x \in \mathbb{R}^{n}:|f(x)| \leq \nu\right\}$. Since $1_{E_{\nu}}|f|^{p} \uparrow|f|^{p}$ as $\nu \uparrow \infty$ we infer from the Monotone Convergence Theorem and the additivity of the integral that

$$
\int_{E_{\nu}}|f(x)|^{p} d x \uparrow \int|f(x)|^{p} d x \quad \text { as } \nu \uparrow \infty .
$$

By the additivity of the integral we infer that

$$
\left\|f-1_{E_{\nu}} f\right\|_{p}^{p}=\int_{\mathbb{R}^{n} \sim E_{\nu}}|f(x)|^{p} d x=\int|f(x)|^{p} d x-\int_{E_{\nu}}|f(x)|^{p} d x \downarrow 0 \quad \text { as } \nu \uparrow \infty
$$

We may therefore choose a positive integer $N$ such that $\left\|f-1_{E_{N}} f\right\|_{p} \leq \epsilon / 2$. Since $f 1_{E_{N}} \in \mathbf{L e b}_{1}$ we may choose an elementary function $s$ such that $|s| \leq N$ and

$$
(2 N)^{p} \int\left|f 1_{E_{N}}-s\right|(x) d x \leq\left(\frac{\epsilon}{2}\right)^{p}
$$

Then

$$
\left\|f 1_{E_{N}}-s\right\|_{p}^{p}=\int\left|f 1_{E_{N}}-s\right|^{p} d x \leq(2 M)^{p} \int\left|f 1_{E_{N}}-s\right| d x \leq\left(\frac{\epsilon}{2}\right)^{p} .
$$

It follows from Minkowski's Inequality that

$$
\|f-s\|_{p} \leq\left\|f-1_{E_{N}} f\right\|_{p}+\left\|1_{E_{N}} f-s\right\|_{p} \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

### 2.1. Smoothing. Let

$$
\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

be a smooth function such that
(i) $0 \leq \phi$;
(ii) $\operatorname{cl}\{\phi \neq 0\} \subset\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$;
(iii) $\int \phi(x) d x=1$.

For each $\epsilon>0$ we let

$$
\phi_{\epsilon}(x)=\epsilon^{-n} \phi\left(\epsilon^{-1} x\right) \quad \text { for } x \in \mathbb{R}^{n} .
$$

Then
(i) $0 \leq \phi_{\epsilon}$;
(ii) $\operatorname{cl}\left\{x \in \mathbb{R}^{n}: \phi_{\epsilon}(x) \neq 0\right\} \subset\left\{x \in \mathbb{R}^{n}:|x|<\epsilon\right\}$;
s (iii) $\int \phi_{\epsilon}(x) d x=1$.
Theorem 2.2. Suppose $1 \leq p<\infty$ and $f$ is measurable and

$$
\int|f(x)|^{p} d x<\infty
$$

Then $\phi_{\epsilon} * f$ is smooth and

$$
\left\|f-\phi_{\epsilon} * f\right\|_{p} \rightarrow 0 \text { as } \epsilon \downarrow 0
$$

Proof. Let $\eta>0$ and let $s$ be a elementary function such that $\|f-s\|_{p}<\eta / 3$. Then

$$
\left\|f-\phi_{\epsilon} * f\right\|_{p} \leq\|f-s\|_{p}+\|s-\phi * s\|_{p}+\left\|\phi_{\epsilon} *(f-s)\right\|_{p}<2 \eta+\|s-\phi * s\|_{p}
$$

Finally, as $s$ is elementary, $\left\|s-\phi_{\epsilon} * s\right\|_{p} \rightarrow 0$ as $\epsilon \downarrow 0$. (Do you see why?)

