Aaaa Nor(4,a) Rects
UNDEFINED CONTROL SEQUENCES

1. HOLDER’S INEQUALITY AND MINKOWSKI’S INEQUALITY.

We fix p,q € [1, 00] such that
1 1
Syto
p q

Definition 1.1. Suppose f : Rn — R is Lebesgue measurable. We let

1/p
11l = (/f(:v)l”dx> it p < oo

[I£lloe = sup{t € (0,00) : Leb™({|f[ > t}) > 0}.

and we let

Proposition 1.1. Suppose f : Rn — R is Lebesgue measurable and ¢ € R. Then
et llp = lelllf1]p-

Proof. Exercise for the reader. O

Theorem 1.1. (Holder’s Inequality.) Suppose f,g : Rn — R are Lebesgue
measurable. Then

Fglly < [1f1lpllgllq-

Proof. Exercise for the reader. Here are some hints. Treat the case p = oo or
q = oo by a straightforward argument. When p < oo and ¢ < oo first reduce to the
case ||f||, = 1 and ||g||; = 1 by making use of the previous Proposition; then apply
the inequality
Uppt/a < 1 1
a’Pb /1< —g+ =b for a,be (0,00).

p q
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Theorem 1.2. Minkowski’s Inequality. Suppose f,g : Rn — R are Lebesgue
measurable. Then

17+ gllp < 1[f1lp + llgllp-

Proof. Exercise for the reader. Here are some hints. The cases p =1 and p = oo
follow from the triangle inequality. In case 1 < p < oo apply Hélder’s Inequality to

[f+glP < |f+glP (1 f] +1g))- O
1.1. An extension of Hélder’s Inequality. Suppose p, ¢, 7 € [0, 00] and
111
p oq

Theorem 1.3. Suppose f,g: Rn — R are Lebesgue measurable. Then

Fallr < [1f1lpllgllq-

Proof. Exercise for the reader. It easily reduces to the Holder Inequality. ([l
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1.2. Minkowski’s inequality in integral form.

Theorem 1.4. (Minkowski’s inequality in integral form.) Suppose f : R x
R — R is Lebesgue measurable and 1 < p < co. Then

</‘/h(w,y)dy‘ dw>1/p S/(/Ih(z,y)l’d:p)l/p dy.

Proof. By an approximation argument we need only consider h of the form

N
v,y) =Y fi@)1g @), (v,y) eRxR,
j=1

where N is a positive integer; f; is Lebesgue measurable; and Fj €, j =1,...,N;
and F;NF; =0if 1 <i<j < N. We use Minkowski’s inequality to estimate

(e
But
[ ([reora)” dy:ﬁ_vj/F ([nera)” =5 [ (fiere)”

j=174%;
O
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2. CONVOLUTION AND OTHER STUFF.

Definition 2.1. Whenever X is a set, f is a function with domain X and P is a
permutation of X we let
Pf=foP™H
thus if @) is another permutation of X then
(PoQ)f =PQFf).
Definition 2.2. For each a € Rn let
Ta : Rn — Rn,

translation by a, be such that

Evidently,

and
Tq OTp = Tatb for b € Rn.

Proposition 2.1. Suppose a € Rn.
If f € n then
f€Lebl & 71,fcLebt
in which case 1(f) = 1(7..f).
If f € n then
f€Lleb, & 7,f € Leb

in which case L(f) = L(7.f).
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Proof. Exercise for the reader. Proceed as follows. First, show that ||7,[R]|| = || R|]
whenever R is a rectangle. Second, show that I, (7,s) = I,(s) whenever s € n
and that n(7,s) = n(s) whenever s € n. Lastly, approximate f above by s € n if
f € Leb) and by s € n if f € Leb,,. O

Definition 2.3. Whenever f, g € Leb, we define
f*g € Leb,
by letting

frg@) = [ fo=vow)dy tor o€ R,

We say the pair (f,g) € n x n of functions on Rn is admissible if f and g are
Lebesgue measurable and

Leb" ({[f] * |g] = c0}) =0
in which case we define
fxg:Rn—R
by letting

J flx—y)gly)dy if |f|*]g|(z) < oo,
0 else.

f*g(x)={

Proposition 2.2. Suppose f,g € Leb:[ . Then the following statements hold.

(i) frg=gx*f;
(ili) fx*(gxh) = (f=*g)=*Mh
(iv) if a € Rn then

(Taf)*g=Ta(f x9) = f*(7ag9)

Proof. Exercise for the reader. Use Tonelli’s Theorem and Proposition ?7. O

Proposition 2.3. Suppose f,g,h € Leb,,. Then the following statements hold.
(i) (f,g) is admissible;
(ii) f*g € Leb,, and f * g = g x f almost everywhere;
(iii) f=*(gxh) = (f *g)*h almost everywhere;
)

(iv) if @ € Rn then
(taf)*g=7a(f xg) = f *(7og) almost everywhere.

Proof. Exercise for the reader. Use Tonelli’s Theorem and Proposition 7?7 to show
that (f, g) is admissible. You could also peak at the proof of the next Theorem. O

Theorem 2.1. Suppose f and g are Lebesgue measurable, ||f||, < oo and ||g]|1 <
oo. Then (f,g) is admissible and

1 gllp < [[f1lpllgll1-
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Proof. Using Minkowski’s Inequality in integral form we estimate

I *gll, = (/’/f(x—y)g(y)dyp dw>1/p
<[(/ If(x—y)g(y)lpdﬂf)l/p dy
—/</|f(:ry)|pdx>1/p l9(y)| dy
- [(/1 f(x)lpdm)l/p 9(s) | dy

= [If1lnllgll-

Proposition 2.4. Suppose 1 < p < oo, f is Lebesgue measurable and

£l < oo
Then for each € > 0 there is an elementary function s such that ||f — s||, <e.
Proof. Let € > 0.
For each positive integer v let E, = {x € R"™ : |f(z)| < v}. Since 1g |f? 1 |f[P

as v T oo we infer from the Monotone Convergence Theorem and the additivity of
the integral that

/ \f($)|pme/|f(x)|pdx as v 1 oo.
E

v

By the additivity of the integral we infer that
F-tedlp= [ Wapde= [If@Prd- [ f@PdeLo st

R*"~E, E,

We may therefore choose a positive integer N such that ||f — 1g, fll, < €/2.
Since f1g, € Leb; we may choose an elementary function s such that |s| < N and

(QN)P/|f1EN —s|(z) dz < (%)p
Then

eEN\NP
Fey = slly = [ 1716y~ s < @317 [ 1716, = slde < (5)

It follows from Minkowski’s Inequality that

L= sllp < If =1ay fllp + [1ey f = sllp <

€

2

€

+

= €.

N}

2.1. Smoothing. Let
p:R" =R
be a smooth function such that
(i) 0<¢;
(i) cl{p #0} C {x e R™: |z| < 1};
(iii) [ ¢(z)dr =1.



For each € > 0 we let
d(r)=€"¢ (e_lx) for x € R™.
Then

(i) 0 < ¢
(ii) cl{z € R" : ¢ (x) #0} C {x € R™ : |z] < €};
s(ill) [ ¢e(z)de = 1.

Theorem 2.2. Suppose 1 < p < oo and f is measurable and
/|f(m)\p dx < 0.
Then ¢, * f is smooth and

‘|f_¢e*f||p—>OaS€J,0.

Proof. Let n > 0 and let s be a elementary function such that ||f — s||, < n/3.
Then

f = dex fllp < NI = sllp + [Is = @ x sllp +[|¢e x (f = 9)llp <20+ |ls = & s[p.
Finally, as s is elementary, ||s — ¢¢ * s||, — 0 as € | 0. (Do you see why?) O



