
1. Initial segments, well ordering and the axiom of choice.

1.1. Initial segments. We suppose throughout this subsection that < linearly
orders the set X.

Definition 1.1. A subset I of X is an initial segment if

x ∈ X, y ∈ I and x < y ⇒ x ∈ I.

Trivially, ∅ and X are initial segments.

Proposition 1.1. The union of a family of initial segments is an initial segment.
The intersection of a nonempty family of initial segments is an initial segment.

Exercise 1.1. Prove this Proposition. If you understand the union and intersection
of families of sets its simple.

Proposition 1.2. Suppose I and J are initial segments. Then either I ⊂ J or
J ⊂ I.

Proof. It will suffice to show that

(1) J ∼ I ̸= ∅ ⇒ I ⊂ J.

So suppose y ∈ J ∼ I and, contrary to (1), there is x ∈ I ∼ J . Since x ̸= y we
have either (i) x < y or y < x by trichotomy. If x < y we have x ∈ J since J is an
initial segment and if y < x we have y ∈ I since I is an initial segment, neither of
which is possible since x ̸∈ J and y ̸∈ I. Thus (1) holds. □

Remark 1.1. let I be the family of initial segments. For I, J ∈ I declare

I ≺ J

if I ⊂ J and I ̸= J .
From Proposition 1.2 we see that ≺ is linear.
Now suppose A is a nonempty subfamily of I. By Proposition 1.1 we find that

J = ∪A ∈ I. It is easy to see that J is a least upper bound for A with respect to
≺.

We will construct the real numbers R from the rational numbers Q by using a
slight variant of this construction.

Definition 1.2. For each x ∈ X we let

I(x) = {w ∈ X : w < x}.

Proposition 1.3. I(x) is an initial segment for any x ∈ X.

Proof. This follows directly from the transitivity of <. □

Theorem 1.1. The linear ordering < is complete if and only if the only initial
segments are ∅, X and the sets

I(x) and I(x) ∪ {x}, x ∈ X.

Exercise 1.2. Prove this Theorem.

Exercise 1.3. Let < be the standard linear ordering on the set Q of rational
numbers. (We will construct Q from the natural numbers N shortly.) Let

I = {x ∈ Q : x < 0 or x2 < 2}.
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Show that I is an initial segment. (This is easy.) Show that

q ∈ Q and I = I(q) ⇒ q2 = 2.

(This gives many students fits.) We will show shortly that q2 = 2 for no q ∈ Q.

1.2. Well ordering. We suppose throughout this subsection that < well orders
the nonempty set X.

For each nonempty subset A of X we let

l(A)

be the unique least member of A and we let

0 = l(X).

Proposition 1.4. Suppose I is an initial segment of X, I ̸= X and

x = l(X ∼ I).

Then
I = I(x).

Proof. Suppose w ∈ I(x). Were it the case that w ∈ X ∼ I we would have x ≤ w
since x the least member of X ∼ I; since w < x this is excluded by trichotomy. So
I(x) ⊂ I.

Suppose w ∈ I. Since x ∈ X ∼ I we have w ̸= x so, by trichotomy, either (i)
w < x or (ii) x < w. Were it the case that x < w we would have x ∈ I since I is
an initial segment. Thus (i) holds. So I ⊂ I(x). □

Definition 1.3. Let

X ′ = {x ∈ X : x < y for some y ∈ X}.
(So X ′ = X if X has no largest member and X ′ = X ∼ {b} if X has a largest
member b.)

Let
S : X ′ → X

be such that
S(x) = l({y ∈ X : x < y}) whenever x ∈ X ′.

We call S the successor function.
An element of X ∼ ({0} ∪ rngS) is called a limit point.

Definition 1.4. We say a subset A of X is inductive if 0 ∈ A and

I(x) ⊂ A ⇒ x ∈ A whenever x ∈ X.

Theorem 1.2. The principle of transfinite induction. Suppose A is and
inductive subset of X. Then A = X.

Proof. Suppose, to the contrary, that X ∼ A is nonempty and let x = l(X ∼ A).
Then I(x) ⊂ A by trichotomy which implies x ∈ A since A inductive. This is a
contradiction. □

Theorem 1.3. Defining a Function by Transfinite Induction. Suppose

(i) Y is a set;
(ii) G = {g : for some x, x ∈ X and g : I(x) → Y };
(iii) G : G → Y .
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Then there is one any only one f such

f : X → Y

and such that

f(x) = G(f |I(x)) whenever x in X.

Proof. Let H be the family of functions h mapping initial segments J into X such
that

h(x) = G(h|I(x)) whenever x ∈ J .

Let f = ∪H.

Lemma 1.1. If h1, h2 ∈ H then either h1 ⊂ h2 or h2 ⊂ h1.

Proof. Let J1, J2 be the domains of h1, h2, respectively and note that, by a previous
Proposition, either J1 ⊂ J2 or J2 ⊂ J1. Suppose J1 ⊂ J2 and let K = {x ∈ J1 :
h1(x) ̸= h2(x)}. Suppose K ̸= ∅ and let x be its least member. Then h1|I(x) =
h2|I(x) so h1(x) = G(h1|I(x)) = G(h2|I(x)) = h2(x) so x ∈ K, a contradiction.
Thus h1 ⊂ h2. In a similar fashion one shows that if J2 ⊂ J1 then h2 ⊂ h1. □

Thus f is a function. It is a simple matter to show that its domain is inductive
as is the set of x ∈ X such that f(x) = G(f |I(x)). □

Theorem 1.4. Suppose Xi is well ordered by <i, i = 1, 2. There is one and only
one function

f

such that

(i) either the domain of f equals X1 and the range of f is an initial segment
of X2 or the domain of f is an initial segment of X1 and the range of f is
an initial segment of X2;

(ii) if x, y ∈ dmn f and x <1 y then f(x) <2 f(y).

Remark 1.2. Both (i) and (ii) may hold in which case we would say that the
orderings <1 and <2 are isomorphic. In any case, the Theorem says that, given
two well orderings, one may be thought of as the restriction of the other to an initial
segment. In particular, any two well orderings are comparable.

Proof. Let G be the family of functions g mapping some initial segment I1 of X1

into X2 such that

g(x) = l(g[I(x)]) whenever x ∈ I1

and let f = ∪G.
Proceed as in the proof of the preceding Theorem. □

1.3. Ordinal numbers. It is clear what it means for two well ordered sets to be
isomorphic and that we may define an equivalence relation on the family of all well
ordered sets declaring two well ordered sets to be equivalent if they are isomorphic
in the same way we defined cardinal numbers. The resulting equivalence classes are
called ordinal numbers. The preceding Theorem implies that there is a natural
well ordering on the set (?!) of ordinal numbers.
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1.4. Choice functions and the axiom of choice.

Definition 1.5. Suppose C is a family of nonempty sets. We say c is a choice
function for C if c is a function, dmn c = C and

c(C) ∈ C whenever C ∈ C.

The Axiom of Choice (AC). Suppose C is a family of nonempty sets. Then
there is a choice function for C.

The Well Ordering Axiom (WO). Every set can be well ordered.

Theorem 1.5. (AC)⇔(WO).

Proof. Suppose (AC). Let X be a set and let ξ be a choice function on 2X ∼ {∅}.
We will show that there is one and only one well ordering of X such that for any
initial segment J of X not equal to X the least element of X ∼ J is ξ(X ∼ J). We
prove this as follows. We let W be the set of ordered pairs(w,W ) such that W is
a subset of X, w is a well ordering of W and such that if J is an initial segment of
W relative to w which is not equal to W then ξ(X ∼ J) is the least element with
respect to w of W ∼ J . Then∪

{w : for some W , (w,W ) ∈ W}.

is the desired well ordering of X. We leave the details to the reader; use the ideas
in our previous results on well ordering.

Now suppose (WO) and let C be a family of nonempty sets. Let X = {(C, c) :
C ∈ C and c ∈ C} and let w be a well ordering of X. Then

{(C, c) : C ∈ C and (C, c) is the w-least member of {(C, b) : b ∈ C}}
is a choice function for C. □

Henceforth we go with the crowd and assume (AC).


