1. Binary operations.

Suppose X is a set
Definition 1.1. We say β is a binary operation on X if

$$
\beta: X \times X \rightarrow X
$$

We say such a binary operation β is commutative or Abelian if

$$
\beta(x, y)=\beta(y, x) \quad \text { whenever } x, y \in X
$$

Definition 1.2. We say $e \in X$ is an identity element (for the binary opera$\operatorname{tion} \beta$ on X) if

$$
\beta(x, e)=x \quad \text { and } \quad \beta(e, x)=x \quad \text { whenever } x \in X
$$

If e_{1} and e_{2} are identity elements for β we have

$$
e_{1}=\beta\left(e_{1}, e_{2}\right)=e_{2}
$$

Thus an identity element for a binary operation, if it exists, is unique and we may speak of the identity element for the binary operation.
Definition 1.3. We say the binary operation β on X is associative if

$$
\beta\left(\beta\left(x_{1}, x_{2}\right), x_{3}\right)=\beta\left(x_{1}, \beta\left(x_{2}, x_{3}\right)\right) \quad \text { whenever } x_{1}, x_{2}, x_{3} \in X
$$

Suppose β is associative. For each positive integer $n \geq 2$ and each $j \in\{1, \ldots, n-$ $1\}$ we define the map

$$
\beta_{j, n}: X^{n} \rightarrow X^{n-1}
$$

on $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ by requiring the i-th coordinate of its image under $\beta_{j, n}$ to be x_{i} if $i<j$; to be $\beta\left(x_{j}, x_{j+1}\right)$ if $i=j$; and to be x_{i+1} if $j<i \leq n-1$. We set

$$
\beta_{n}=\beta_{1,2} \circ \ldots \beta_{1, n-1} \circ \beta_{1, n} .
$$

Note that

$$
\beta_{n}: X^{n} \rightarrow X
$$

We leave it to the reader to prove that

$$
\beta_{\mu(1), 2} \circ \ldots \beta_{\mu(n-2), n-1} \circ \beta_{\mu(n-1), n}=\beta_{n}
$$

whenever $\mu:\{1, \ldots, n-1\} \rightarrow\{1, \ldots, n\}$ is such that $\mu(i)<i+1$ for each $i \in$ $\{1, \ldots, n-1\}$, thus verifying the general associative law. One frequently writes

$$
x_{1} \cdots x_{n}
$$

instead of $\beta_{n}\left(x_{1} \ldots, x_{n}\right)$.
Definition 1.4. Suppose β is a binary operation on X with identity e. Suppose $x \in X$. We say w is a left inverse to X if $w \in X$ and $\beta(w, x)=e$. We say y is a right inverse to x if $y \in X$ and $\beta(x, y)=e$. We say z is an inverse to x if z is a left inverse to x and z is a right inverse to x; if z is the unique element with this property, we say z is the inverse to x. We say x is invertible if there is an inverse to x.

Suppose β is associative. Suppose $x \in X, w$ is a left inverse to x and y is a right inverse to x then

$$
w=w e=w(x y)=(w x) y=e y=y
$$

Thus there is a unique left inverse to x, there is a unique right inverse to x, the unique left inverse to x equals the unique right inverse to x and this element is the unique inverse to x.

1.1. Groups.

Definition 1.5. A group is an ordered triple

$$
(G, \mu, e)
$$

such that G is a set, μ is an associative binary operation on G with identity e, and every element of G is invertible. It is customary to say
" G is a group"
instead of " (G, μ, e) is a group". Very often one writes

$$
g h
$$

for $\mu(g, h)$ and one writes

$$
g^{-1}
$$

for the inverse to the element g of G. When G is Abelian, very often one writes

$$
0
$$

for the identity element,

$$
g+h
$$

for $g h$ whenever $g, h \in G$ and one writes

$$
-g
$$

for g^{-1} whenever $g \in G$.
1.2. Finite summation. Let X be a set.
1.3. Finite summation. Suppose Y is a set and

$$
\cdot+\cdot: Y \times Y \rightarrow Y
$$

is such that
(i) $x+(y+z)=(x+y)+z$ whenever $x, y, z \in Y$;
(ii) $x+y=y+x$ whenever $x, y \in Y$;
(iii) there is $0 \in Y$ such that $y+0=y=0+y$ whenever $y \in Y$.

For example, Y could be an Abelian group or Y could be $[0, \infty]$ where + on $[0, \infty) \times[0, \infty)$ is addition in the Abelian group of $\overline{\mathbb{R}}$ and where

$$
y+\infty=\infty=\infty+y \quad \text { whenever } y \in[0, \infty]
$$

Definition 1.6. For $f, g \in Y^{X}$ we define $f+g \in Y^{X}$ by letting

$$
(f+g)(x)=f(x)+g(x) \quad \text { for } x \in X
$$

and we note that appropriately reformulated versions of (i),(ii) and (iii) hold. We let

$$
0: X \rightarrow Y
$$

be such that $0(x)=0$ for $x \in X$.
Definition 1.7. For $f \in Y^{X}$ we let

$$
\mathbf{s p t} f=\{x \in X: f(x) \neq 0\}
$$

and call this subset of X the support of f. We let

$$
\left(Y^{X}\right)_{0}=\left\{f \in Y^{X}: \mathbf{s p t} f \text { is finite }\right\}
$$

and note that $\left(Y^{X}\right)_{0}$ is closed under addition.
Definition 1.8. Whenever $A \subset X$ and $f \in Y^{X}$ we let

$$
f_{A} \in Y^{X}
$$

be such that

$$
f_{A}(x)= \begin{cases}f(x) & \text { if } x \in A \\ 0 & \text { if } x \in X \sim A .\end{cases}
$$

Proposition 1.1. Suppose F is a finite subset of X. There is one and only one function

$$
S_{F}: Y^{X} \rightarrow Y
$$

such that
(i) $S_{F}(0)=0$;
(ii) $S_{F}(f)=S\left(f_{X \sim\{a\}}\right)+f(a)$ whenever $f \in Y^{X}$ and $a \in A$;
(iii) $S_{F}(f+g)=S_{F}(f)+S_{F}(g)$ whenever $f, g \in Y^{X}$.

Proof. We define S_{F} by induction on $|F|$ as follows. We let $S_{\emptyset}(0)=0$. If $|F|>0$ we let

$$
S_{F}=\left\{\left(f, S_{F \sim\{a\}}\left(f_{X \sim\{a\}}\right)+f(a)\right): f \in \mathcal{F}_{F} \text { and } a \in F\right\} .
$$

It is obvious that S_{F} is a function if $|F|=1$. To verify that S_{F} is a function in case $|F|>1$ we suppose $f \in \mathcal{F}_{F}, a, b \in F$ and $a \neq b$ and we calculate

$$
\begin{aligned}
S_{F \sim\{a\}}\left(f_{X \sim\{a\}}\right)+f(a) & =\left(S_{F \sim\{a, b\}}\left(f_{X \sim\{a, b\}}\right)+f(b)\right)+f(a) \\
& =S_{F \sim\{a, b\}}\left(f_{X \sim\{a, b\}}\right)+(f(b)+f(a)) \\
& =S_{F \sim\{a, b\}}\left(f_{X \sim\{a, b\}}\right)+(f(a)+f(b)) \\
& =\left(S_{F \sim\{a, b\}}\left(f_{X \sim\{a, b\}}+f(a)\right)+f(b)\right. \\
& =S_{F \sim\{b\}}\left(f_{X \sim\{b\}}\right)+f(b) .
\end{aligned}
$$

We leave to the reader the straightforward verification using induction on $|F|$ that S_{F} satisfies (i)-(iii).
1.4. Summation. Let A be an Abelian group and let X be a set. Then A^{X} is an Abelian group with respect to pointwise addition: Given $f, g \in A^{X}$ we set

$$
(f+g)(x)=f(x)+g(x) \quad \text { for } x \in X
$$

We let

$$
\left(A^{X}\right)_{0}=\left\{f \in A^{X}:\{x \in X: f(x) \neq 0\} \text { is finite }\right\}
$$

and note that $\left(A^{X}\right)_{0}$ is a subgroup of A^{X}.
Theorem 1.1. There is one and only one homomorphism

$$
\Sigma:\left(A^{X}\right)_{0} \rightarrow A
$$

such that

$$
\Sigma(f)=f(w)
$$

if $x \in X$ and $f: X \rightarrow A$ is such that

$$
f(x)=0 \quad \text { if } x \in X \sim\{w\} .
$$

Proof. For each $n \in \mathbb{N}$ let

$$
\mathcal{F}_{n}=\left\{f \in A^{X}: \operatorname{card}\{x \in X: f(x) \neq 0\}=n\right\}
$$

Show by induction on n that there is one and only one function

$$
S_{n}: \mathcal{F}_{n} \rightarrow A
$$

such that $S_{0}(f)=0$ if $f \in \mathcal{F}_{0}$ and

$$
S_{n}(f)=S_{n-1}(g)+f(w)
$$

whenever $n>0, g \in \mathcal{F}_{n-1}, w \in X, g(w)=0$, and

$$
f(x)= \begin{cases}g(x) & \text { if } g(x) \neq 0 \\ 0 & \text { if } g(x)=0 \text { and } x \neq w\end{cases}
$$

It will be necessary to use the associativity and commutativity of the group operation in carrying out the inductive step.

Show by induction on m that $S_{m} \mid \mathcal{F}_{n}=S_{n}$ whenever $m, n \in \mathbb{N}$ and $m>n$. Let $\Sigma=\cup_{n=0}^{\infty} \mathcal{F}_{n}$.

1.5. Rings.

Definition 1.9. A ring is an ordered quadruple

$$
(R, \alpha, 0, \mu)
$$

such that $(R, \alpha, 0)$ is an Abelian group, μ is a associative binary operation on R which is distributive over α, by which we mean that

$$
\mu(a, \alpha(b, c))=\alpha(\mu(a, b), \mu(a, c)) \quad \text { and } \quad \mu(\alpha(a, b), c)=\alpha(\mu(a, c), \mu(b, c))
$$

whenever $a, b, c \in R$.
It is customary to say " R is a ring" instead of " $(R, \alpha, \mu, 0)$ is a ring". If $a, b \in R$ we write

$$
a+b \text { for } \alpha(a, b) \text { and } a b \text { for } \mu(a, b)
$$

Distributivity then amounts to

$$
a(b+c)=a b+a c \quad \text { and } \quad(a+b) c=a c+b c \quad \text { whenever } a, b, c \in R
$$

We say the ring R is commutative if

$$
a b=b a \quad \text { whenever } a, b \in R
$$

We say R is a ring with identity if there is $1 \in R$ such that

$$
1 a=a=a 1 \quad \text { whenever } a \in R
$$

We say the nonzero element a of the commutative ring R is a divisor of the element $c \in R$ if there is there is $b \in R$ such that $c=a b$.

We say D is an integral domain if R is a commutative ring with identity and 0 has no divisors.

Definition 1.10. An ordering for the ring R is a subset P of R such that
(i) for each $a \in R$ exactly one of the following holds:

$$
a \in P, \quad a=0, \quad-a \in P
$$

(ii) $a+b \in P$ and $a b \in P$ whenever $a, b \in P$;

If the R is a commutative ring R with identity which has an ordering then R is an integral domain. We say $a \in R$ is positive if $a \in P$ and we say a is negative if $-a \in P$.

Suppose P is an ordering for R. One easily verifies that

$$
<=\{(a, b): b-a \in P\}
$$

is a linear ordering of R

1.6. Fields.

Definition 1.11. A field is an ordered quintuple

$$
(F, \alpha, 0, \mu, 1)
$$

such that $(F, \alpha, 0, \mu)$ is a ring and $(F \sim\{0\}, \mu \mid(F \sim\{0\} \times F \sim\{0\}), 1)$ is an Abelian group. This last condition amounts to saying that μ is commutative and that any $x \in F \sim\{0\}$ has an inverse with respect to μ.
1.6.1. The field of quotients of an integral domain. Suppose D is an integral domain. One easily verifies that

$$
q=\left\{((a, b),(c, d)) \in(R \times R \sim\{0\})^{2}: a d=b c\right\}
$$

is an equivalence relation on $R \times(R \sim\{0\})$. whenever $(a, b) \in R \times(R \sim\{0\})$ we let

$$
\frac{a}{b}
$$

be the equivalence class of (a, b). It is a simple exercise which we leave to the reader to verify that there are unique binary operations α and μ on $\frac{D}{q}$ such that
$\alpha\left(\frac{a}{b}, \frac{c}{d}\right)=\frac{a d+b c}{b d} \quad$ and $\quad \mu\left(\frac{a}{b}, \frac{c}{d}\right)=\frac{a c}{b d} \quad$ whenever $\left.(a, b),(c, d)\right) \in R \times(R \sim\{0\})$ and that

$$
\left(\frac{D}{q}, \alpha, \frac{0}{1}, \mu, \frac{1}{1}\right)
$$

is a field. Moreover, if P is the set of positive elements of an ordering of D then

$$
\frac{P}{d}=\left\{\frac{a}{b}: a, b \in P\right\}
$$

is an ordering of $\frac{D}{q}$.

