
1. Binary operations.

Suppose X is a set

Definition 1.1. We say β is a binary operation on X if

β : X ×X → X.

We say such a binary operation β is commutative or Abelian if

β(x, y) = β(y, x) whenever x, y ∈ X.

Definition 1.2. We say e ∈ X is an identity element (for the binary opera-
tion β on X) if

β(x, e) = x and β(e, x) = x whenever x ∈ X.

If e1 and e2 are identity elements for β we have

e1 = β(e1, e2) = e2.

Thus an identity element for a binary operation, if it exists, is unique and we may
speak of the identity element for the binary operation.

Definition 1.3. We say the binary operation β on X is associative if

β(β(x1, x2), x3) = β(x1, β(x2, x3)) whenever x1, x2, x3 ∈ X.

Suppose β is associative. For each positive integer n ≥ 2 and each j ∈ {1, . . . , n−
1} we define the map

βj,n : Xn → Xn−1

on (x1, . . . , xn) ∈ Xn by requiring the i-th coordinate of its image under βj,n to be
xi if i < j; to be β(xj , xj+1) if i = j; and to be xi+1 if j < i ≤ n− 1. We set

βn = β1,2 ◦ . . . β1,n−1 ◦ β1,n.

Note that
βn : Xn → X.

We leave it to the reader to prove that

βµ(1),2 ◦ . . . βµ(n−2),n−1 ◦ βµ(n−1),n = βn

whenever µ : {1, . . . , n − 1} → {1, . . . , n} is such that µ(i) < i + 1 for each i ∈
{1, . . . , n− 1}, thus verifying the general associative law. One frequently writes

x1 · · ·xn

instead of βn(x1 . . . , xn).

Definition 1.4. Suppose β is a binary operation on X with identity e. Suppose
x ∈ X. We say w is a left inverse to X if w ∈ X and β(w, x) = e. We say y is
a right inverse to x if y ∈ X and β(x, y) = e. We say z is an inverse to x if z
is a left inverse to x and z is a right inverse to x; if z is the unique element with
this property, we say z is the inverse to x. We say x is invertible if there is an
inverse to x.

Suppose β is associative. Suppose x ∈ X, w is a left inverse to x and y is a right
inverse to x then

w = we = w(xy) = (wx)y = ey = y.

Thus there is a unique left inverse to x, there is a unique right inverse to x, the
unique left inverse to x equals the unique right inverse to x and this element is the
unique inverse to x.
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1.1. Groups.

Definition 1.5. A group is an ordered triple

(G,µ, e)

such that G is a set, µ is an associative binary operation on G with identity e, and
every element of G is invertible. It is customary to say

“G is a group”

instead of “(G,µ, e) is a group”. Very often one writes

gh

for µ(g, h) and one writes

g−1

for the inverse to the element g of G. When G is Abelian, very often one writes

0

for the identity element,
g + h

for gh whenever g, h ∈ G and one writes

−g

for g−1 whenever g ∈ G.

1.2. Finite summation. Let X be a set.

1.3. Finite summation. Suppose Y is a set and

· + · : Y × Y → Y

is such that

(i) x+ (y + z) = (x+ y) + z whenever x, y, z ∈ Y ;
(ii) x+ y = y + x whenever x, y ∈ Y ;
(iii) there is 0 ∈ Y such that y + 0 = y = 0 + y whenever y ∈ Y .

For example, Y could be an Abelian group or Y could be [0,∞] where + on
[0,∞)× [0,∞) is addition in the Abelian group of R and where

y +∞ = ∞ = ∞+ y whenever y ∈ [0,∞].

Definition 1.6. For f, g ∈ Y X we define f + g ∈ Y X by letting

(f + g)(x) = f(x) + g(x) for x ∈ X

and we note that appropriately reformulated versions of (i),(ii) and (iii) hold. We
let

0 : X → Y

be such that 0(x) = 0 for x ∈ X.

Definition 1.7. For f ∈ Y X we let

spt f = {x ∈ X : f(x) ̸= 0}
and call this subset of X the support of f . We let(

Y X
)
0
= {f ∈ Y X : spt f is finite}



3

and note that
(
Y X

)
0
is closed under addition.

Definition 1.8. Whenever A ⊂ X and f ∈ Y X we let

fA ∈ Y X

be such that

fA(x) =

{
f(x) if x ∈ A,

0 if x ∈ X ∼ A.

Proposition 1.1. Suppose F is a finite subset of X. There is one and only one
function

SF : Y X → Y

such that

(i) SF (0) = 0;
(ii) SF (f) = S(fX∼{a}) + f(a) whenever f ∈ Y X and a ∈ A;

(iii) SF (f + g) = SF (f) + SF (g) whenever f, g ∈ Y X .

Proof. We define SF by induction on |F | as follows. We let S∅(0) = 0. If |F | > 0
we let

SF = {(f, SF∼{a}(fX∼{a}) + f(a)) : f ∈ FF and a ∈ F}.
It is obvious that SF is a function if |F | = 1. To verify that SF is a function in
case |F | > 1 we suppose f ∈ FF , a, b ∈ F and a ̸= b and we calculate

SF∼{a}(fX∼{a}) + f(a) = (SF∼{a,b}(fX∼{a,b}) + f(b)) + f(a)

= SF∼{a,b}(fX∼{a,b}) + (f(b) + f(a))

= SF∼{a,b}(fX∼{a,b}) + (f(a) + f(b))

= (SF∼{a,b}(fX∼{a,b} + f(a)) + f(b)

= SF∼{b}(fX∼{b}) + f(b).

We leave to the reader the straightforward verification using induction on |F |
that SF satisfies (i)-(iii). □

1.4. Summation. Let A be an Abelian group and let X be a set. Then AX is an
Abelian group with respect to pointwise addition: Given f, g ∈ AX we set

(f + g)(x) = f(x) + g(x) for x ∈ X.

We let

(AX)0 = {f ∈ AX : {x ∈ X : f(x) ̸= 0} is finite}
and note that (AX)0 is a subgroup of AX .

Theorem 1.1. There is one and only one homomorphism

Σ : (AX)0 → A

such that

Σ(f) = f(w)

if x ∈ X and f : X → A is such that

f(x) = 0 if x ∈ X ∼ {w}.
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Proof. For each n ∈ N let

Fn = {f ∈ AX : card {x ∈ X : f(x) ̸= 0} = n}.
Show by induction on n that there is one and only one function

Sn : Fn → A

such that S0(f) = 0 if f ∈ F0 and

Sn(f) = Sn−1(g) + f(w)

whenever n > 0, g ∈ Fn−1, w ∈ X, g(w) = 0, and

f(x) =

{
g(x) if g(x) ̸= 0,

0 if g(x) = 0 and x ̸= w.

It will be necessary to use the associativity and commutativity of the group oper-
ation in carrying out the inductive step.

Show by induction on m that Sm|Fn = Sn whenever m,n ∈ N and m > n. Let
Σ = ∪∞

n=0Fn. □
1.5. Rings.

Definition 1.9. A ring is an ordered quadruple

(R,α, 0, µ)

such that (R,α, 0) is an Abelian group, µ is a associative binary operation on R
which is distributive over α, by which we mean that

µ(a, α(b, c)) = α(µ(a, b), µ(a, c)) and µ(α(a, b), c) = α(µ(a, c), µ(b, c))

whenever a, b, c ∈ R.

It is customary to say “R is a ring”
instead of “(R,α, µ, 0) is a ring”. If a, b ∈ R we write

a+ b for α(a, b) and ab for µ(a, b).

Distributivity then amounts to

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc whenever a, b, c ∈ R.

We say the ring R is commutative if

ab = ba whenever a, b ∈ R.

We say R is a ring with identity if there is 1 ∈ R such that

1a = a = a1 whenever a ∈ R.

We say the nonzero element a of the commutative ring R is a divisor of the
element c ∈ R if there is there is b ∈ R such that c = ab.

We say D is an integral domain if R is a commutative ring with identity and
0 has no divisors.

Definition 1.10. An ordering for the ring R is a subset P of R such that

(i) for each a ∈ R exactly one of the following holds:

a ∈ P, a = 0, −a ∈ P ;

(ii) a+ b ∈ P and ab ∈ P whenever a, b ∈ P ;



5

If the R is a commutative ring R with identity which has an ordering then R is
an integral domain. We say a ∈ R is positive if a ∈ P and we say a is negative
if −a ∈ P .

Suppose P is an ordering for R. One easily verifies that

<= {(a, b) : b− a ∈ P}
is a linear ordering of R

1.6. Fields.

Definition 1.11. A field is an ordered quintuple

(F, α, 0, µ, 1)

such that (F, α, 0, µ) is a ring and (F ∼ {0}, µ|(F ∼ {0}×F ∼ {0}), 1) is an Abelian
group. This last condition amounts to saying that µ is commutative and that any
x ∈ F ∼ {0} has an inverse with respect to µ.

1.6.1. The field of quotients of an integral domain. Suppose D is an integral do-
main. One easily verifies that

q = {((a, b), (c, d)) ∈ (R×R ∼ {0})2 : ad = bc}
is an equivalence relation on R × (R ∼ {0}). whenever (a, b) ∈ R × (R ∼ {0}) we
let

a

b
be the equivalence class of (a, b). It is a simple exercise which we leave to the reader
to verify that there are unique binary operations α and µ on D

q such that

α(
a

b
,
c

d
) =

ad+ bc

bd
and µ(

a

b
,
c

d
) =

ac

bd
whenever (a, b), (c, d)) ∈ R× (R ∼ {0})

and that

(
D

q
, α,

0

1
, µ,

1

1
)

is a field. Moreover, if P is the set of positive elements of an ordering of D then

P

d
= {a

b
: a, b ∈ P}

is an ordering of D
q .


