1. BINARY OPERATIONS.

Suppose X is a set
Definition 1.1. We say 3 is a binary operation on X if
B: X xX—X.
We say such a binary operation 8 is commutative or Abelian if
B(x,y) = B(y,x) whenever z,y € X.

Definition 1.2. We say e € X is an identity element (for the binary opera-
tion $ on X) if

B(z,e) =x and p(e,x) =z whenever x € X.

If e; and es are identity elements for S we have

€1 = ﬁ(€1,€2) = €2.
Thus an identity element for a binary operation, if it exists, is unique and we may
speak of the identity element for the binary operation.

Definition 1.3. We say the binary operation 8 on X is associative if

B(B(x1,x2),23) = (1, B(x2,23)) whenever 1,22, 25 € X.

Suppose (3 is associative. For each positive integer n > 2 and each j € {1,...,n—

1} we define the map
Bijn: X" — X1
on (z1,...,&,) € X™ by requiring the i-th coordinate of its image under S, ,, to be
x; if i < j; to be Bz, xj41) if i = j; and to be z;11 if j <i <n—1. We set
Bn = 51,2 O.. ~61,n71 © 51,n-
Note that
Bn: X" = X.

We leave it to the reader to prove that

ﬁ/t(l),Q O... ﬂ,u(n—Q),n—l © ﬁu(n—l),n = Bn
whenever p : {1,...,n — 1} — {1,...,n} is such that u(i) < ¢ + 1 for each i €
{1,...,n— 1}, thus verifying the general associative law. One frequently writes

Tl Tn
instead of B, (x1 ..., xy).

Definition 1.4. Suppose ( is a binary operation on X with identity e. Suppose
x € X. We say w is a left inverse to X if w € X and S(w,x) = e. We say y is
a right inverse to z if y € X and f(z,y) = e. We say z is an inverse to x if z
is a left inverse to x and z is a right inverse to x; if z is the unique element with
this property, we say z is the inverse to x. We say z is invertible if there is an
inverse to x.

Suppose 3 is associative. Suppose x € X, w is a left inverse to = and y is a right
inverse to = then
w=we = w(zy) = (wx)y = ey = y.
Thus there is a unique left inverse to z, there is a unique right inverse to z, the
unique left inverse to x equals the unique right inverse to x and this element is the
unique inverse to x.



1.1. Groups.
Definition 1.5. A group is an ordered triple

(G, pe)
such that G is a set, u is an associative binary operation on G with identity e, and
every element of G is invertible. It is customary to say

“G is a group”

instead of “(G, u, e) is a group”. Very often one writes

gh
for (g, h) and one writes
g !
for the inverse to the element g of G. When G is Abelian, very often one writes
0
for the identity element,
g+h

for gh whenever g, h € G and one writes

-9

1

for g7* whenever g € G.

1.2. Finite summation. Let X be a set.

1.3. Finite summation. Suppose Y is a set and
-+ Y XY =Y
is such that

(i) v+ (y+2) = (r + y) + 2z whenever z,y,z € Y;
(ii) =z +y =y + = whenever z,y € Y;
(iii) there is 0 € Y such that y + 0 =y = 0+ y whenever y € Y.

For example, Y could be an Abelian group or Y could be [0, 00] where + on
[0,00) x [0,00) is addition in the Abelian group of R and where

y+oo=00=o00+y whenever y € [0,c0].
Definition 1.6. For f,g € YX we define f + g € YX by letting
(f+9)(@) = f(z) +g(z) forzeX

and we note that appropriately reformulated versions of (i),(ii) and (iii) hold. We
let
0: X =Y

be such that 0(z) =0 for z € X.
Definition 1.7. For f € YX we let
sptf = {o € X : f(x) #0}
and call this subset of X the support of f. We let
(YX)O ={f €YX :spt f is finite}



and note that (Y~ )o is closed under addition.

Definition 1.8. Whenever A C X and f € Y¥ we let
faeY™X

) flz) ifxze A,
f"‘(x){o if o e X ~ A

be such that

Proposition 1.1. Suppose F' is a finite subset of X. There is one and only one
function

Sp:Y* =Y
such that
(i) Sk(0) = 0;
(i) Sr(f) = S(fx~ia}) + f(a) whenever f € YX and a € A4;
(iii) Sr(f +g) = Sr(f) + Sr(g) whenever f,g € YX.
Proof. We define Sp by induction on |F| as follows. We let Sy(0) = 0. If |[F| > 0
we let

Sp ={(f.Sria}(fx~ia}) + fla)): f € Fp and a € F}.

It is obvious that Sp is a function if |F| = 1. To verify that Sp is a function in
case |F| > 1 we suppose f € Fp, a,b € F and a # b and we calculate

Skefay(fx~qa}) + f(a) = (Spaiapy (fx~fapy) + (D) + f(a)
= Sr~faby ([x~fapy) + (f(0) + f(a))
= Srefap} ([x~iapy) T (f(a) + f(D))
= (Srefapy (fx~fapy + f(a)) + f(D)
= Sp~pny (fxmqpy) + ().
We leave to the reader the straightforward verification using induction on |F|

that S satisfies (i)-(iii). O

1.4. Summation. Let A be an Abelian group and let X be a set. Then AX is an
Abelian group with respect to pointwise addition: Given f,g € AX we set

(f+9)(z) = f(z)+g(x) forxzeX.
We let
(AX)g={f € AX : {zx € X : f(z) # 0} is finite}
and note that (A4X)g is a subgroup of AX.
Theorem 1.1. There is one and only one homomorphism
Y:(A%)y = A
such that

ifze X and f: X — A is such that
flz)=0 ifzeX ~ {w}.



Proof. For each n € N let
Fo={fcAX icard{z € X : f(x) #0} =n}.
Show by induction on n that there is one and only one function
Sy Fn— A
such that So(f) =0 if f € Fy and
Sn(f) = Sn-1(9) + f(w)
whenever n >0, g € F,,_1, w € X, g(w) =0, and
xz) if g(x 0
J) = {g( ) if zgx; i 07and x # w.

It will be necessary to use the associativity and commutativity of the group oper-
ation in carrying out the inductive step.

Show by induction on m that S,,|F, = S, whenever m,n € N and m > n. Let
Y =U20Fn- O

1.5. Rings.

Definition 1.9. A ring is an ordered quadruple
(R,a,0,p)

such that (R, «,0) is an Abelian group, p is a associative binary operation on R
which is distributive over «, by which we mean that

(@, a(b,0)) = alu(a,b), pla, ) and pu(ala,b).c) = alu(a, c), ulb, <))
whenever a, b, c € R.

It is customary to say “R is a ring”
instead of “(R,a, i1,0) is a ring”. If a,b € R we write

a + b for a(a,b) and ab for u(a,b).
Distributivity then amounts to
a(b+c)=ab+ac and (a+b)c=ac+bc whenever a,b,c € R.
We say the ring R is commutative if
ab =ba whenever a,b € R.
We say R is a ring with identity if there is 1 € R such that
la = a=al whenever a € R.

We say the nonzero element a of the commutative ring R is a divisor of the
element ¢ € R if there is there is b € R such that ¢ = ab.

We say D is an integral domain if R is a commutative ring with identity and
0 has no divisors.

Definition 1.10. An ordering for the ring R is a subset P of R such that

(i) for each a € R exactly one of the following holds:
a€P, a=0, —acP

(ii) a + b € P and ab € P whenever a,b € P;
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If the R is a commutative ring R with identity which has an ordering then R is
an integral domain. We say a € R is positive if a« € P and we say a is negative
if —a € P.

Suppose P is an ordering for R. One easily verifies that

<={(a,b):b—a € P}
is a linear ordering of R
1.6. Fields.

Definition 1.11. A field is an ordered quintuple
(F,a,0,p,1)

such that (F, «,0, u) is aring and (F' ~ {0}, p|(F ~ {0} x F' ~ {0}), 1) is an Abelian
group. This last condition amounts to saying that p is commutative and that any
x € F ~ {0} has an inverse with respect to u.

1.6.1. The field of quotients of an integral domain. Suppose D is an integral do-
main. One easily verifies that

q={((a,b),(c,d)) € (Rx R~ {0})?: ad = bc}

is an equivalence relation on R x (R ~ {0}). whenever (a,b) € R x (R ~ {0}) we

let
a

b
be the equivalence class of (a,b). It is a simple exercise which we leave to the reader

to verify that there are unique binary operations a and p on % such that

a(%, 2) = adb—; be and u(%, 2) = % whenever (a,b), (¢,d)) € R x (R ~ {0})
and that
D 0 1
(;v Q, Iv s i)
is a field. Moreover, if P is the set of positive elements of an ordering of D then
g = {% ta,b € P}

is an ordering of %.



