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1. THE RIEMANN AND LEBESGUE INTEGRALS.

Fix a positive integer n. Recall that
R, and M,

are the family of rectangles in R™ and the algebra of multirectangles in R", respec-
tively.

Definition 1.1. We let
]:7-:_7 ]:TH Bn)
be the set of [0, co] valued functions on R™; the vector space of real valued functions
on R™; the vector space of f € F,, such that {f # 0}Urng f is bounded, respectively.
We let

S, =B,N1SM,)CF, andwelet S5 =38,NFFcST(M,).

Thus s € S, if and only if s : R® — R, rng s is finite, {s = y} is a multirectangle
for each y € R and {s # 0} is bounded and s € S; if and only if s € S,, and s > 0.

We let S:; 4+ be the set of nondecreasing sequences in S;F. For each s € S; 4 we
let

sups € F,F
be such that
sup s(z) = sup{s,(z) : v € N} for z € R"
and we let
n(s) =sup{[}(s,): v e NT}.

Remark 1.1. We shall prove below the nontrivial Theorem that if s, € S:, 4 and
sup s = supt then I} . (s) = I} 1(t).
Proposition 1.1. Suppose ¢ € [0,00) and s,t € S:,T' Then
(1) cs € S;T and I} 1 (cs) = I} +(s);
(i) s+t e} and I7 (s +1t) = I () + I} 4(t);
(i) if s <t then I}, (s) < I +(2).

Proof. Straightforward exercise for the reader. O
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Definition 1.2. For each f € F,F we let
r(f) =inf{I;(s): s €S} and f < s}
and we let
I(f) = inf{l};+(s) : s € SIT and f < sups}.

Proposition 1.2. We have

r(s) = I (s) whenever s € S;.
Proof. This should be obvious. O
Corollary 1.1. We have

|T.(s)| <r(|s]) whenever s € S,,.
Proof. Indeed, for any s € S,, we have |I,,(s)] < I, (|s]). O
Remark 1.2. We also have

1(s) = I,F (s) whenever s € S;F.
We shall prove this nontrivial fact shortly.
Proposition 1.3. Suppose f € I and r(f) < co. Then f € B,.
Proof. There is s € S such that f < s and this implies rng f U {f > 0} C
rng s U {s > 0}. O
Remark 1.3. On the other hand, if @ € R™ and f = ooly,y € F,f and f =
sup, v1{qy so 1(f) = 0.

Proposition 1.4. We have
1<r.

Proof. Suppose f € FF, s € S and f < s. Let t be the sequence in S;" whose
range equals s; that is, ¢, = s for all v € N. Then supt = s so

10f) < I 4 (8) = L (s)
which is to say 1(f) is a lower bound for the set of I (u) corresponding to t € S;F
with f < . 0

Proposition 1.5. F, > f — r(|f|) and F,, 3 f — 1(|f]) are extended seminorms
on F,.

Proof. Straightforward exercise for the reader. O

Example 1.1. Let
Q@=(0,1)NnQ.
We will show that
r(lg) =1 and that I(1g) =0.
Since 1g < 1¢o,1) € S;7 we find that
r(lg) < Iy (L) = 1/(0,1)]| = L.
Suppose 1g < s € I,}. Let y € [0, 00]. Obviously,
s(z) = s(q) > 1 whenever z € s 1[{y}] and ¢ € (0,1) N QN s~ 1[{y}].



It follows that
y>1 whenever (0,1)Nint s 1[{y}] # 0

since, in this case, Q N s~ [{y}] # 0.

Therefore,
Lis) = > ylls ' {u}l
= Y yllints (]
> 3yl ) nint s [{yl
> ) [10,1) nint s~ [{y |
yerng s
= 3 110,1) N s {y]l
S
Thus
I‘(lQ)Zl.

Let ¢ : N — QN [0,1] be univalent with range Q N [0, 1]. For each v € N let

1%
S, = Z 1{%} S S,J{.
pn=0
Note that s € S:L: ;s a nondecreasing sequence in S,", that
IF(s) = > I{au}ll =0
=0
and that
lg =sups < sups.
Thus
(1g) < I4(s) = 0.
Theorem 1.1. Suppose A € M,, B is a nondecreasing sequence in M, and
A C UL B,. Then
|A]| < sup || By ||.
1%

Proof. We define the sequence C' in M,, by letting Cy = By and for each v € N*
letting C', = B, ~ B, _1. Then C' is disjointed and B, = U;VL:OCM for each v € N.

Suppose 1 < A < co. Choose a compact multirectangle K such that K C A and
[|A|] < A||K]|. For each v € N choose an open multirectangle U,, such that C, C U,
and [|U,|| < M|C,||. Then K C U2,U, so there is N € N such that K C U_,U,..
Thus

N N
ATHIAN < 1K < TURZ Tull < DTS A D [ICull = AlIBwl-
n=0 u=0

Owing to the arbitrariness of A the Lemma is proved. ([l
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Corollary 1.2. Suppose A € M, B is a countable subfamily of M,, and A C UB.

Then
4[| < > I1B]|.
BeB

Proof. In case B is finite this follows from earlier work. So suppose B is infinite,
let B be an enumeration of B and, for each v € N, let C,, = U}, _(B,,. Then C is a
nondecreasing sequence in M, whose union contains A so that, by the preceding
Theorem,

v o0
IAll < sup [|C, || < sup > (1Bl =D [1Bul-
v v =0 v=0

Theorem 1.2. We have
I(s) = IF(s) for any s € S;F.

Proof. Suppose s € S;F. Obviously, 1(s) < I,F (s)

Suppose ¢ is a nondecreasing sequence in ;7 and s < sup, f,. Let Y = (rngs) ~
{0} and for each y € Y let A, = {z € R" : s(z) = y}. Suppose 0 < XA < 1 and for
eachy €Y andv eNlet By, = {z € A, : \y < t,(y)}. Then A, C US2B,,
so [|4y|| < sup, ||By,.|| by the preceding Theorem. For each y € Y and v € N we
have Ayl B,, <1la,ty and this implies that

My|lAyl] < Aysup || Bll, = sup Ay|| Bll, < In (1a,t0) -

Thus
Mn(s) = > AyllAy|

yey

< Z sup I, (1a,t,)
yey Y

=sup [, Z 1a,ty
v yey

<sup I, (ty)
Letting A 1 1 we find that I,,(s) < sup I,,(¢,). Thus I,,(s) < 1(s). O
Corollary 1.3. We have
|1 (s)| <1(|s|) for any s € Sp.

Proof. This follows from the preceding Theorem since |I,,(s)| < I} (]s|) for any
s€S,. O

Definition 1.3. We let
Riem,,

be the set of f € F,, such that for each € > 0 there is s € S, such that r(|f—s|) <e.
Thus Riem,, is the closure of S,, with respect to the extended seminormF?,, > f —

r(|f1).
We say f € F,, is Riemann integrable if f € Riem,,.



We let
Leb,,
be the set of f € F,, such that for each € > 0 there is s € S,, such that 1(]f —s|) < e.
Thus Leb,, is the closure of S,, with respect to the extended seminorm F,, > f

1(|f]) of Sn.
We say f € F, is Lebesgue integrable if f € Leb,,.

Proposition 1.6. Suppose f € F,. Then f € Riem,, if and only if for each ¢ > 0
there is g € Riem,, such that r(|f — g|) < € and f € Leb,, if and only if for each
€ > 0 there is g € Leb,, such that r(|f — g|) < e.

Proof. This should be obvious. It boils down to the fact the the closure of the
closure equals the closure. ([

Theorem 1.3. Riem, is a linear subspace of F,, and there is one and only one
linear function

R : Riem, — R
such that

(i) R(s) = I,(s) whenever s € S,,;
(i) |R(f)| <r(]f]) whenever f € Riem,,.

Leb,, is a linear subspace of F,, and there is one and only one linear function
L:Leb, - R
such that
(i) L(s) = I.(s) whenever s € S,;
(i1) |L(f)| < I(|f]) whenever f € Leb,,.

Proof. Keeping in mind Corollaries 1.1 and 1.3 this follows from two applications
of the Abstract Closure Principle. (]

Remark 1.4. Suppose f € Riem,, and € > 0. Choose s € S,, such that r(f—s) <e.
Then

[R(f) = In(s)| = [R(f) =R(s)| = [R(f = s)[ <r(f —s) < e
Suppose f € Leb,, and ¢ > 0. Choose s € S,, such that 1(f —s) <e. Then
IL(f) = In(s)| = [L(f) = L(s)| = [L(f = s)| <1(f —s) <.

Example 1.2. Let ) be as in the preceding Example. It follows from the foregoing
that

<
<

].Q S Lebl.
I claim that

1o ¢ Riem;.

Suppose s € S, m € S and [lg — s| < m. Suppose y € R, z € [0,00) and

I =ints1[{y}]Nnm~1[{z}]. Then

1 —y|=1g(z) —sx)|<m(z)=2 ifzelIn(0,1)NQ
and
ly| = Ng(z) — s(z)| <m(z) =2z ifxeln(0,1)~Q
from which it follows that 1/2 < z whenever = € I. Thus 1/2 < I;F(m).
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Definition 1.4. Suppose a,b € R. We let
aAb=min{a,b} and welet aV b= max{a,b}.
Note that
aVb4+aAb=a+b whenever a,beR.
For ¢ € R we let
ct=cv0 andwelet ¢ =—(cA0)

and we note that

t—¢ andthat |c|=c" +c.

c=c
Proposition 1.7. Suppose f € F,, and f > 0. Then
f€Riem, = R(f)>0 and fe€Leb, = L(f)>0.
Proof. Suppose € >0, s € S,, and r(|f — s|) <e. Then |f —sT| < |f — s so
IR(f) = Ly (s1)| = [R(S) =R(s)| = [R(f = sT)| < x(|f —s[") <x(|f —s]) <e

which implies
Riem(f) > I7(s1) —e > —e.

Owing to the arbitrariness of ¢ we infer that R(f) > 0.
In the same way one shows that if f € Leb,, then L(f) > 0. O

Corollary 1.4. We have
f,9 € Riem, and f <g = R(f) <R(g)

and
fyg € Leb, and f <g = L(f) <L(g).

Proof. Apply the preceding Proposition to g — f. O
Theorem 1.4. Suppose f € Riem,,. Then f € Leb,, and

R(f) =L(f).
Exercise 1.1. Prove Theorem 1.4.

Exercise 1.2. Show that the product of two Riemann integrable functions is Rie-
mann integrable.

Theorem 1.5. Suppose f € F,, f >0 and 0 < ¢ < co. Then
f € Riem,, = f Ac¢€ Riem,,
and
f €Leb, = fAce€Leb,.
Suppose f,g € F,. Then

f,g € Riem,, = fAg, fVgeRiem,

and
f,g€Leb, = fAg, fVgeLeb,.



Lemma 1.1. Suppose a,b,c,d € R. Then

laAnb—aAnd <|b—d|,
lanb—cAd| <la—c|+]|b—d],
lavb—avd <|b—d,
lavb—cVvd <l|a—c|+]|b—d|

Proof. To prove the first inequality, suppose b < d and consider the three cases
a<b,a<b<d,d< a; then note that the inequality is symmetric in b and d.
To prove the second inequality note that

lanb—cAd| <lanb—aAnd +]aNd—cAd]

and then use the first inequality.
One may use the same techniques to prove the third and fourth inequality. [

Exercise 1.3. Prove Theorem 1.5. Make use of the preceding Remark and Lemma.

Definition 1.5. Suppose A C R™ and f is a real valued function whose domain
contains A. We let

fA:Rn%R

be such that
Fal) = {f(x) ifx € A,

0 else.
We set
Ra(f) =R(fa) if fa € Riem,
in which case we say f is Riemann integrable over A and we set

La(f) =L(fa) if fa € Leb,

in which case we say f is Lebesgue integrable over A. So, for example, if

A= (a,b),
b
/ f(x)dx

is, by definition, one or both of R, 3)(f) or Lqp (f).
Proposition 1.8. Suppose f € F, and S € M,,. Then
f € Riem,, = 1gf € Riem,,

and

f € Leb, = 1gf € Leb,,.

Exercise 1.4. Prove Proposition 1.8.



2. THE THEORY OF THE LEBESGUE INTEGRAL.

2.1. The Monotone Convergence Theorem. The theory of the Lebesgue inte-
gral rest on the following Theorem.

Theorem 2.1. (The Monotone Convergence Theorem.) Suppose f is a
nondecreasing sequence in F,. Then

(1) l(sgp fu) = sgpl(fu)

Proof. Let a and b be the left and right hand sides of (1), respectively. Owing to
the monotonicity of 1, we find that b < a. Thus we need only show that a < b and
we may assume that b < co.

To this end, let € > 0. For each v € Nlet s, € S:;T be such that f, <sups, and

I (sy) <1(fy) +277 e
For each p,v € N with p < v we let
St=\/ sy el
n=p
We define the sequence t by letting
t, = (Sy), € S
For any v € N we have
ty, = (S(I;)V < (SOD—H)V < (Sg+1)u+1 =1ty+1
sote€ S;;T and
(1) Iy (ty) = I ((Sg)w) < I 4(S0)-
Moreover, for any v, & € N, we have
(51/)5 < (Sv)yvf < (ngg)u\/é = tv\/& < supt,;
it follows that f, < supt for any v € N which in turn implies that sup f <supt so
I(sup f) < I (t).
We will complete the proof by showing that
(2) I +(t) < supl(f,) +e
Suppose p, v € N and g < v. Since s, < S}, we have
Ju S Jo N fugr < (supsy) A (sup Spiy) = sup(sy A Sppy)-
Using the fact that a Ab+a Vb= a + b whenever a,b € [0, 00] we find that
Su NS T8 =su NS +su VS =8+ 50

thus
1(fy) + T2 (SE) < I (s A i) + 124 (SE)
=L (s, N Sjyq +5))
= I:LL,T(SM + SZ—H)
=1y 4(sp) + 1 4(S) 1)
SASu) +270 e+ 14 (S040)



Since 1(f,,) < 0o we obtain
nr(S5) < Iy 4 (S,41) + 27+ g
Summing from g = 0 to v and using (1) we find that
LH(t) SI4(SE) S Thy(SH) +e=1I04(s0) + e <1(f,) +e " +e
thereby establishing (2). O

Corollary 2.1. ( Fatou’s Lemma.) Suppose f is a sequence in F,7. Then
I(liminf f,) < liminf1(f,).

Proof. For each v € N let F,, = inf,>, f,,, note that sup, F}, = liminf, f, and
apply the Monotone Convergence Theorem to F'. O

Corollary 2.2. Suppose f is a nondecreasing sequence in F,". Then

1 <Z J%) <> 1)
v=0 v=0

Proof. We have

1<Zofu> =1 <sgp2fu> = supl (Zofu) < sgp%l(fﬂ) =D 1(f).

n=0 v=0

2.2. Basic theory of Lebesgue integration.
Theorem 2.2. Suppose f € F,F N Leb,. Then

1(f) = L(f).
Proof. Let € > 0. Choose s € S, such that 1(|f — s|) < ¢/2. Applying 1 to the
inequalities f < |f —sT|+ s and st <|f — sT| + f we infer that |[I(f) —1(sT)| <
1(]f — sT]). Also, |L(f) — L(s™)| < 1(|f — s™|). Since 1(s7) = L(s™) and since
|f —sT| <|f —s| we find that [I(f) — L(f)] <€ O

Lemma 2.1. Suppose [ is a sequence in F,5 N Leb,, such that
(i) sup, fu(x) < oo for each x € R™ and
(i) 1(sup, fy) < 0.
Then sup,, f, € Leb,,.
Proof. Replacing f, by supg<,<, fu if necessary we may assume without loss of
generality that f is nondecreasing.
Let € > 0. Since (ii) holds we may choose N € N such that

supl(f,) <1(fn) +e.

It follows from the preceding Proposition that
1(fv = fn) =L(fy — fn) = L(fy) = L(f~) =1(fo) = 1(f~)

for any v € N so that
supl(f, — fn) <e.
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Since f is nondecreasing we may use the Monotone Convergence Theorem to infer
that

1((Slip fu) —fn) = l(sgp(fu - fn) = Stipl(fy - fn) <e

Lemma 2.2. Suppose f is a sequence in F,;} N Leb,. Then inf, f, € Leb,.

Proof. For each v € N let F,, = info<,<, f. € Leb,,. Evidently, I is nonincreasing
so N > v Fy— F, is nondecreasing. Since

inf F,, = Fy —sup(Fy — F,)

and since inf, f, = inf, F, this Lemma follows from Lemma 2.2. |

Theorem 2.3. Suppose F € F,,, F > 0, 1(F) < oo and there is a sequence f in
Leb,, such that
F(z)= lim f,(z) forx € R™

vV—00

Then F' € Leb,,.

Proof. Choose a s € S:;T such that F' < sups and IZ,T(S) < 0. Using Lemmas 2.1
and 2.2 we infer that, for each £ € N,

F A s¢ =infsup f, A s¢ € Leb,,.
Vo ou>v

Since I' = sup, F' A s¢ the Theorem follows from Lemma 2.1. (I

Theorem 2.4. (The Lebesgue Dominated Convergence Theorem.) Sup-
pose

(i) fis a sequence in Leb,, and F' € F,, is such that
UILI& fu(z) = F(x) for all z € R";
(ii) ¢ is a sequence in Leb,, such that
\fol < gu, v EN;
(iii) G € FI,
Van;O gv(x) = G(z) for all z €e R™ and  lim 1(g,) = I(G) < 0.

v—00

Then F' € Leb,, and
lim 1(|F — f,|) = 0.

V—00
In particular,
lim L(f,) = L(F).

| Zde el

Proof. ¥or each v € N let h, = G+ g, — |F — f,| € F,/ N Leb,,. We know from
the previous Theorem that G and |F — f,| = lim,, |f, — fu|, ¥ € N are in Leb,,
Thus, for any v € N,

L(h,) = L(G) + L(gy) = L(|F — f,])
SO

l(hu) = l(G) + l(gu) - 1(‘F - fu|)
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By Fatou’s Lemma we have
T < Timi
2l(G) l(hyH_l)gf hy) < hyrr_l)gf 1(h,).
Since
liminf1(h,) = 21(G) — limsup I(|F' — f,|).

v—00 v—00

it follows that
limsupI(|F — f,]) = 0.

V—r00
This in turn implies that F' € Leb,,.
The last conclusion follows from the observation that

IL(F) - L(f,)| = |L(F - f,)| <I(|F — f,|) for any v € N.

Definition 2.1. We let

Leb = {sup f, : f is a nondecreasing sequence in F;* N Leb,, p .
n n
1%

Proposition 2.1. Suppose f is a sequence in Leb,". Then sup f € Leb; .

Proof. For each v € N choose a nondecreasing sequence g, € Leb) such that
fu =supg,. For each v € N let

h, = \/ \/(9#)5 € Leb:'
1=0 £=0

Then A is nondecreasing and f = sup h. ([l

Proposition 2.2. Suppose f,g € Leb," and ¢ € [0,00]. Then cf, f+g, f A g and
fV g belong to Leb,!.

Proof. Straightforward exercise. (I
Theorem 2.5. Suppose f,g € Leb. Then
1(f +9) = 1(f) + 1(g)-

Proof. Let p,q be nondecreasing sequences F,” N Leb,, with suprema f and g,
respectively. Using the Monotone Convergence Theorem three times we calculate

I(f +9) =supl(py + )
= sup L(p, + qv)
= sup L(p,) + L(q)
= sgpl(pu) +1(qv)

=1(f) +1(g)-
]

Theorem 2.6. Suppose f is a sequence in Leb;f. Then Ziozo fv € Leb;'lr and

1 (Z ﬂ) =Y 1%

v=0
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Proof. Since Y07 f, = sup, Z;:o fu we infer from Propositions 2.1 and 2.2 that
ZEOZO fv e Leb;’{. Moreover, by the Monotone Convergence Theorem,

1 (Z_% fu> =1 <sgpz fﬂ) = supl (Z_:O fu) = sup <Z 1(f#)> = Z_%l(fu)-

pn=0 pn=0
([

2.3. Lebesgue measure. Sets of measure zero. This will come in handy.

Definition 2.2. Suppose A C R™. We let

Leb"(A) = inf { Z [|R.|| : R C Ry, R is countable, and A C UR}
RER

and call this nonnegative extended real number the Lebesgue measure of A. We

say A has measure zero if Leb"(A) = 0.

Proposition 2.3. Suppose A C R". Then
Leb™(A) = inf{sup ||M,|| : M is a nondecreasing sequence in M,, and A C US2 M, }.

Proof. Let a and b be the left and right sides of the equality to be proved.
Suppose R is a sequence in R,,. For each v € N let M, = Uj_oR,,. Then M is
a nondecreasing sequence in M,,, U2 R, = U2 M,, and

v
sup [[M, || < sup Y [|Rull = D lIR|-
v v pn=0 v=0

It follows that b < a.

Suppose M is a nondecreasing sequence in M,,. Let Ly = My and for each
v € Nt let L, = M, ~ M,_;. Then L is a disjointed sequence in M, and
US2 oLy = U2 g M,,. For each v € N choose a finite disjointed family S,, of rectangles
with union M,. Let R = US2,S,. Then R is a countable family of rectangles with
union USE g M,,. It follows that a <b. O

Theorem 2.7. Suppose A C R™. Then Leb™(4) =1(14).

Proof. Suppose t € S:T and 14 < supt. Suppose 0 < 0 < oo. For each v € N, let
M, = {t, > 0} € M,, note that oly;, < 1y, 50} so that o||M,|| < I (t,). Now
A C U2 yM, and M is an increasing sequence in M,, so

olleb"(A) < osup |[M, || = sup I, (t,) = I 1(t).

Owing to the arbitrariness of ¢ it follows Proposition 2.3 that Leb™(A4) <1(14).
On the other hand, suppose B is a sequence in R,, such that A C US>, B, . Let

t be the sequence such that, for each v € N, t, = Z#:O 1p,. Evidently, t € SJT
and 14 <supt. Thus

(1) < I74(6) =Y LF(1p,) =D B
v=0 v=0

It follows that 1(14) < Leb"(A). O
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Theorem 2.8. Suppose M is a multirectangle in R™. Then
Leb" (M) = || M]].
Proof. Apply Theorem 2.7 and Theorem1.2. (]

Proposition 2.4. The following statements hold.
(i) |0) = 0;
(ii) if A C B C R™ then Leb"(4) < Leb"(B).
(iii) if A is a nondecreasing sequence of subsets of R™ the

Leb"(USZgA,) = sup Leb™(4,);
(iv) If A is a countable family of subsets of R™ then

Leb™(UA) < ) Leb"(A).
AcA
Proof. (i) and (ii) are direct consequences of the definition.
Suppose A is a nondecreasing sequence of subsets of R™. Using Theorem 2.7 and
the Monotone Convergence Theorem we find that

Leb™(UZ A,) =1 (1u§°:0A.,) =supl(1ls,) =supLeb™(4,)

so (iii) holds.
If A is a sequence of subsets of R” then

oo
1us a4, = Slip Loy a4, < E 1a,
v=0

so (iv) follows from Theorem 2.7 and Theorem 2.2. O

Corollary 2.3. Any countable set is a set of measure zero. The union of a countable
family of sets of measure zero is a set of measure zero.

Proposition 2.5. If a € R” and A C R™ then Leb"(a + A) = Leb™(A). (That

is, outer measure is translation invariant.)
Proof. This follows from the corresponding fact for multirectangles. O

2.4. Nonmeasurable sets. There exists a countable disjointed family C of subsets
of R such that

(i) there is ¢ € (0, 00) such that Leb"(C) = ¢ for C € C;

(ii)) 0 < Leb™(UC) < oo;
it follows that

Leb™(UC) < Z Leb™(C) = 0.
cec

Remark 2.1. I'm fairly sure this is equivalent to certain forms of the Axiom of
Choice. Consult Professor Hodel, the local set theory expert, if you want more
information about this.

Remark 2.2. Let C be an enumeration of C and for each v € N let D, = UZ:OC;r
Then for some v we have

Leb™(D, UCyy1) < Leb™(D,) + Leb™(Cyy1)-
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Proof. We're going to be terse! Let B be the range of a choice function for
{r+Q:z eR}.
(In the parlance of algebra, B is a set of coset representatives for the reals modulo

the rationals.) It follows that
{¢+B:qeQ}

is a countable partition of R. Now

00 =Leb"(R) <> Leb"(¢+ B) =Y Leb"(B)
q€Q q€Q
SO
Leb"™(B) > 0.
Since
Leb"(B) <Y Leb"(BN[zz2+1))
ZEZL
there is z € Z such that
Leb"(BN[z,z+1)) > 0.
For each g € Q let
Cqy=q+ (Bnlz,z+1)).

Then
Leb"(Cy) = Leb™(Cy) > 0 whenever g € Q.
Let
C={Cy:q€Q, 0<g<1}.
Then
Leb™(UC) < Leb"([z,2+2)) =2
but

Z Leb"(C) = coLeb™(Cp) = 0.
cec
U

2.5. Lebesgue measurable sets and functions. To avoid the situation we en-
countered in the preceding subsection we define a very useful class of set on which
Leb” behaves very well.

Definition 2.3. We say a subset E of R” is Lebesgue measurable if for each
e > 0 and each bounded rectangle R in R"™ there is a multirectangle M such that
M C R and

Leb"(RN((E~M)U(M ~ E))) < e.

We let
Ly

be the family of Lebesgue measurable sets.
Theorem 2.9. Suppose £ C R”. Then
EcL, < lpcLeb/.
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Proof. For each v € Nlet R, =N {z € R" : |z;| < v} € R,.
Suppose E € L,, v € N and € > 0. Choose M € M,, such that M C R, and
Leb" (R, N((E~M)U(M ~ E))) <e.
Then
1r,nE — 1, | = 1R, n((E~M)U(M~E))
SO
1(1r,ne — 1a,) < 1(1g,n((B~rnui~g))) = Leb™ (R,N((E ~ M)U(M ~ E))) < e.

Owing to the arbitrariness of € we infer that 1r g € Leb,,. Since 1p, g T 1 as
v 1 oo we infer that 1z € Leb,!.

Suppose 1g € Leb:[. Let f be a nondecreasing sequence in Leb,, such that
f > 0and supf = 1g. Suppose R is a bounded rectangle in R™. Then 1rf is a
nondecreasing sequence in Leb,, such that 1zf > 0 and suplgf = 1glg = lgnE-
Let € > 0. By the Mononone Convergence Theorem there is N € N such that
1(1gne — 1rfn) < €/4. Choose s € S, such that 1(1grfy —s) < €/4 and let
M =Rn{s>1/2} € M,,. Then

§1Rm((E~M)u(M~E)) = % }1Rm(E~M) - 1Rm(M~E)|
<|s = 1gnEg|
<|s—=1gfn|+ 1rfN — 1rnE|;
it follows that
Leb" (RN ((E ~ M)U (M ~ E))) =1 (1pn((B~anu~i))) < €

so that E is Lebesgue measurable.

Theorem 2.10. The following statements hold.
(i) M, C L,.
(ii) F € L, and Leb"(E) < oo if and only if for each € > 0 there is a bounded
multirectangle M such that
Leb"(E~M)U(M ~ E)) <e.
(iii) E € L, if and only if there is nondecreasing sequence F in {G € L, :
Leb™(G) < oo} such that E = U2 F,.
(iv) If E,F € £, then EUF,ENF,E ~F € £, and
Leb"(EUF) 4+ Leb™(ENF) = Leb™(E) + Leb"(F).
If € is a countable nonempty family of Lebesgue measurable subsets of
R™ the following assertions hold:

(v) UE and NE are Lebesgue measurable;
(vi) if & is disjointed then

Leb"(UE) = ) Leb™(E);
EcE

(vii) if € is nested then
Leb™(UE) = sup{Leb"(F) : B € &}
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(viii) if £ is nested and Leb"(E) < oo for some F € £ then
Leb™(NE) = inf{Leb™(E) : E € £}.

Proof. Exercise for the reader. O

Remark 2.3. In particular, the Lebesgue measurable subsets of R™ form a o-
algebra of subsets of R™.

Proposition 2.6. Suppose £ C R™. Then
Leb™(F) = inf{Leb™(G) : G is open and E C G}.

Proof. Exercise for the reader. This is a straightforward consequence of the defini-
tion of Leb™. 0

Theorem 2.11. Suppose E C R™ and Leb™(FE) < oo. Then FE is Lebesgue
measurable if and only if

Leb™(E) = sup{Leb"(K) : K is compact and K C E}.
Proof. Exercise for the reader. Here’s a start. First reduce to the case when E is

bounded. Next, given € > 0 choose a bounded open subset G such that E C G and
Leb"(E) < Leb™(G) 4 €. Now counsider E ~ G. O

Definition 2.4. Suppose f : R® — R. We say f is Lebesgue measurable if
f7U] € L,, whenever U is an open subset R"

Proposition 2.7. Suppose f : R™ — R. The following are equivalent.

(i) f is Lebesgue measurable.

(ii) {x e R™: f(z) > ¢} € L£,, whenever ¢ € R.
iii x) > ¢} € L, whenever ¢ € R.
i

) )
(iii) {x e R™: f(x)
(iv) {x e R™: f(z) < ¢} € L,, whenever ¢ € R.
(v) {z e R™: f(x) < ¢} € L, whenever ¢ € R.

Proof. Since
1
eR f@ 2 =iz {a R ) > e )
we see that that (ii) implies (iii). Since

{reR": f(x)<c}=R"~{z eR": f(z) > c}

we see that (iii) implies (iv). Since
1
{xeR":f(x)<c}—ﬂ§°_1{xER”:f(x)<c+V}

we see that (iv) implies (v). Since
{zeR": f(x) >c}=R"~{zeR": f(z) <c}

we see that (v) implies (ii). Thus (ii),(iii),(iv) and (v) are equivalent.
(i) obviously implies (ii). Suppose (ii) holds. Then, as (iv) holds,

{r eR":a < f(x) <b} €L, whenever —0o < a<b< 0.

Let U be an open subset of R. Let Z be the family of open subintervals of U with
rational endpoints. Then, as Z is countable, we find that

U =U{f )T €Tt e L,
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Thus (i) holds. O

Corollary 2.4. Suppose N is a positive integer, f; : R* - R, i =1,..., N are
Lebesgue measurable functions, and

M:RY 53R
is continuous. Then

R" 3z = M(fi(x),..., fn(x))

is Lebesgue measurable.

Corollary 2.5. The set of Lebesgue measurable functions is closed under the
arithmetic operation as well as the lattice operations.

Proposition 2.8. Suppose f is a sequence of Lebesgue measurable functions and
F :R™ — R is such that

lim f,(z) = F(x) whenever z € R™.
vV—00

Then F' is Lebesgue measurable.

Proof. Suppose ¢ € R. Then

1
{x eR": F(x) >c} = U2 US_o Ny {xER”:fl,(x) >c+ n}

O
Lemma 2.3. Suppose f:R" 5 R, ce R, E={x € R": f(z) > ¢} and
1
gn(z) = E[f/\ (c+h)—fAc forhe(0,00).
Then
(1) g < grif 0 <k < h < o0
(ii) 1p = SuPgcp<oo G-
Proof. To prove (i) we suppose a € R” and 0 < k < h < co and we observe that
fla) <c¢ = gnla) =0=gi(a),
1 1
e< fl) < etk = gula) = 3 1f(a) ~d < 1[f(0) ~ d = gs(a),
1
c+k<fla)<c+h = gpla)= E[f(a) — ] <1=gi(a),
c+h<fla) = gnla)=1=gr(a)
(ii) is evident. O
Lemma 2.4. Suppose
[ R = R;

¢ is a a sequence of positive real numbers such that

o0
lim ¢, =0 and E c, = 00;
V—>00

v=0
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and FE is the sequence of subsets of R™ defined inductively by setting Ey = {z €
R™: f(x) > ¢} and requiring that

E, 1= {x eR™: f(z) > ZculEu} whenever v > 0.
pn=0

Then
f = Z CulEV .
v=0

Proof. Straightforward exercise. O

Theorem 2.12. Suppose f : R" — R. Then f € Leb, if and only if 1(f) < oo
and f is Lebesgue measurable.

Proof. Suppose f € Leb,. Let ¢ € R. That {z € R" : f(z) > ¢} € L, follows the
first of the two preceding Lemmas and our earlier theory.

Suppose 1(f) < co and f is Lebesgue measurable. Writing f = f* — f~ we see
we need only consider the case f > 0. Let ¢ be a sequence of positive real numbers
such that lim, .., ¢, = 0 and 23020 ¢, = oo and let the sequence E be as in the

preceding Lemma so that
o0
f = Z Cy 1E1/'
v=0

Note that E, € L£,,. That f € Leb,, follows from earlier theory. O

Theorem 2.13. (The absolute continuity of the integral.) Suppose f €
Leb,,. Then for each € > 0 there is § > 0 such that

EeLl,and |E|<d = Lg(|f]) <e

Proof. For each nonnegative integer v let g, = |f| Av. Since g, 1 |f] as v T oo
we infer from the Monotone Convergence Theorem that 1(g,) 1 1(|f]) as v 1 oc.
Choose a positive integer N such that

1(17D) = 1gn) <
By the preceding theory, gy € Leb,,. Let § = 5%. If E € £,, and |E| < ¢ then
fle=(fl—9nv)le+9nvle < [f|—gn + Nlg

€

[\]

so that
Le(Ifl) = L(fl1g) < L(|f| — g~ + N1g) = L(|f]) — L(gn) + N|E| <e.

3. MORE ON THE RIEMANN INTEGRAL.

The Riemann integral isn’t so great but everybody studies it because it’s easier
to define.

The Definition we gave of the Riemann integral is not the standard one. Now
we show that it is equivalent to the standard one.
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Definition 3.1. Suppose f € B,, and § > 0. We let
RiemSumy;(f)

be the set of sums
> feR)|IR])
ReER
where
(i) R is a finite nonoverlapping family of nonempty bounded rectangles;
(i) diam R < 6 whenever R € R;
(i) {f # 0} C UR;
(iv) ¢ is a choice function for R.
The members of RiemSumy;(f) are called Riemann sums for f with mesh
diameter at most 4.

Theorem 3.1. Suppose f € B,,. Then f € Riem, if and only if
inf{diam RiemSum;(f) : 6 >0} =0

in which case
No<s<ooRiemSums(f) = {R(f)}.

Proof. For each v € Nt let C, = {z € R" : |z;| < v}. Let N be the least v € N
such that {x e R": f(z) # 0} C C,.

Part One. Suppose inf{diam RiemSum;(f) : 0 < § < oo} =0. Let 6§ > 0
and let R be a finite disjointed family of nonempty rectangles such that Cy = UR
and diam R < § for R € R.

Let ¢ and ¢ be choice functions for R such that

fe(R)) < i%ff +¢ and supf < f(6(R))+6 whenever R € R.
R

Let
S=" BRI let 5= fER)IR];
RER RER
let
— 3 . _ s +
5= Z(l%ff)lRESn, and let m = Z(S%pf 1%ff)1R€Sn.
RER RER
Then |f — s| < m and, since S, S € RiemSum;(f), we find that

Im) = Y (sup £ inf IR
rer B
< Y (FE(R) — f(e(R)) + 20| R]|
ReR
<S—5+25||Cn||
< diam RiemSum;(f) + 20]|Cn]||.

Owing to the arbitrariness of § it follows that f € Riem,,.

Part Two. Suppose f € Riem,, and ¢ > 0. Choose s € S,,, m € S,/ such
that |f — s| < m, I} (m) < ¢/4. We will show that there is § > 0 such that if ¥ €
Riemsums(f) then |X—1(s)| < €/2; that will imply that diam Riemsums(f) < e.
Since |f — 1oy, 8| < loy,,m we may assume that {z € R" : s(x) # 0 or m(x) #
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0} C Cny1. Tt follows from ?? that there is finite disjointed family of rectangles Q
and functions o : @ — R and p: Q@ — [0, 00) such that

s = Z 0(@Q)lg and m= Z w(@Q)1lg.
QeQ QeQ

Suppose 0 < § < 1 and R and c are as in Definition ?7. We may assume that
UR C Cyy1sinceif R ={Re€R: R~ Cyy1# 0} then,asd < 1,UR' CR" ~ Cn
so f(c(R)) =0 for R € R" and ) pe f(C(R)IR|| = Yo perrs f(c(R))[|R]]. We
may also assume that UR = Cy41 ... Let

G={(Q,R) e QxR:¢c(R)e®Q} andlet B={(Q,R) € QxR:c(R) ¢ Q}.

Then

() =2l< > 10(Q) — fe®)IQNR]

(Q,R)EQXR
< Y wW@IQNRI[+ > MIQnR]|
(Q,R)egG (Q.R)eB
<Im)+M > [lQNRI.
(Q,R)eB
Now if (Q, R) € B and ||Q N R|| # 0 then R is contained in the y/nd neighborhood
of bdry Q) O

3.1. The fundamental theorems of calculus.

Theorem 3.2. Suppose —o¢ < a < b < oo, f : [a,b] — R, f is differentiable at
each point of (a,b) and f is Riemann integrable on (a,b). Then

(3) Ra)(f') dz = f(b) — f(a).

Remark 3.1. Using more traditional notation, (6) says
b
| F@is =0~ fa).

Remark 3.2. Suppose —00 < a < b < oo, f : (a,b) — R, f is differentiable at each
point of (a,b) and f’ is Riemann integrable on (a,b). Then there is M € [0, 00)
such that |f'(x)| < M whenever a < x < b. This implies |f(z) — f(y)| < M|z — y|
whenever ¢ < x < y < b which is to say that Lip f < M. In particular, f has a
unique continuous extension to the closure [a, ] of (a,b).

Exercise 3.1. Prove Theorem 3.2. Note that
N
FO) = fla) = fw:) = f(wia)
i=1
whenever N e Nt anda =29 <z; <--- < a2y =b. Use the Mean Value Theorem
to construct Riemann sums which do the job.
Theorem 3.3. Suppose f : (a,b) — R, f is Riemann integrable and
F(z) =Rz (f) for x € (a,b).
Then

(4) F'(z) = f(z) whenever z € (a,b) and f is continuous at .
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Remark 3.3. Using more traditional notation, (6) says

& ([ raw) = s,

Exercise 3.2. Prove Theorem 3.3. Don’t hesitate to use the theory already devel-
oped.

Exercise 3.3. Suppose 1 < p < co. Let f,g € F;I be such that

Loifo<a <1, Loifl <2 <oo,
fle)=17 and g(z) =<7
0 else 0 else.

Show that 1(f) < oo if and only if p < 1 and show that 17 (g) < oo if and only if
p>1

(Big Hint: Use Theorem 3.2 together with the Mononotone Convergence Theo-
rem of the next set of notes.)

3.2. Characterization of Riemann integrability. The following Theorem char-
acterizes Riem,, in a very precise way.

Theorem 3.4. Suppose f € B,. Then f € Riem, if and only if the set of
discontinuities of f has measure zero.

We will now prove this Theorem. So suppose f € B,,. Let M € [0,00) be such
that | f| < M and let S be a compact rectangle such that {x € R™: f(z) #0} C S.
For each positive integer v let

D,={xeR":0scf(x) >1/v}

and let £ = U2, E,. Then E is the set of discontinuities of f.
Suppose v € NT. By an earlier exercise about oscf, D, is closed. Since D, C
{f # 0} we find that D, is bounded. Thus D, is compact.

Lemma 3.1. Suppose f € Riem,,. There is a disjointed family R of rectangles
such that UR = S and

> (sup f[R] — inf f[R])||R|| < e.
RER

Proof. Let s € S, and m € S be such that |f — s| < m and I,/ (m) < ¢/2.
Replacing s and m by lgs and 1gm if necessary we may assume without loss of
generality that {s # 0} U {m > 0} C S. Choose R,o, i such that R is a finite
disjointed family of rectangles with union S; o, u are functions with domain R and
ranges contained in R and [0, o), respectively;

s= Z o(R)lg and m= Z w(R)1g.

RER RER
Suppose R € R. Then

o(R) — p(R) = s(z) —m(x) < f(z) < s(x) + m(z) = o(R) + u(R) for z € R.
This implies
o(R) - p(R) <inf f and s%pf < o(R) + pu(R)

(sup f —inf f)[[R]] < 2u(R)||R||-
R

Now sum over R. O
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Corollary 3.1. Suppose f € Riem,,. Then the set of discontinuities of f has
measure zero.

Proof. Since Leb"(E) = Leb" (U2, D,) < Y02, Leb™(D,) it will suffice to show
that Leb™(D,) =0 for all v € NT.

So suppose v € NT and let € > 0. Let R be as in the preceding Theorem with ¢
there replaced by ¢/v. I claim that

1
(5) ;IL(BUO"(D,, NR) < (supf— i%f HIR||  whenever R € R.
R

Suppose R € R. If z € D, Nint R # () we have 1/v < oscf(x) < supy f — infg;
moreover, Leb" (D, N RLeb"(*< Leb"(R) = ||R||. If D, Nint R is empty then
Leb™(D, N R) < Leb"(bdry R) = ||bdry R|| = 0. Thus (8) holds. It follows that

" < " < —1i .
Leb™(D,) < Y Leb"(D,NR)<v » (s%pf inf )| Rl < e
RER RER
Owing to the arbitrariness of € we conclude that Leb™(D,) = 0. O

Lemma 3.2. Suppose f € B, and the set of discontinuities of f has measure zero.
Then f € Riem,,.

Proof. Suppose € > 0. Choose > 0 and v € N* such that ||S||/v+Mn < e. Let Z
be a countable family of open rectangles such that D, C UZ and ) . [|R[| < 7.
Since D, is compact there is a finite subfamily F of Z such that D, C UF. Let
& > 0 be such that § is less than the Lebesgue number of the covering

{U :is an open subset of R™ and (supy f —infy f) < 1} .

of the of the compact set K = S ~ UF. Let R be a finite disjointed family of
rectangles with union K none of whose diameters exceed §; let

5= Zi%fflR and let m = Z(S%pf—i%ff)lR—f—MZ 1g.

SER RER ReF
Then 1
|f —s| <m and I;(m)§;||SH—|—M17<e.
(I

Definition 3.2. We say a subset A of R™ has Jordan content if 14 € Riem,, in
which case we let R(14) be the Jordan content of A. In view of the preceding
Theorem, A will have Jordan content if and only if A is bounded and its boundary
has measure zero. Since the boundary of such a set is compact we find that A has
Jordan content if and only if A is bounded and for every ¢ > 0 there is a finite
family R of open rectangles such that ).  [|R|| < e. Since R is linear Jordan
content is additive and if A, B have Jordan content then so do AU B, AN B and
A~ B.



