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1. The Riemann and Lebesgue integrals.

Fix a positive integer n. Recall that

Rn and Mn

are the family of rectangles in Rn and the algebra of multirectangles in Rn, respec-
tively.

Definition 1.1. We let

F+
n , Fn, Bn,

be the set of [0,∞] valued functions on Rn; the vector space of real valued functions
on Rn; the vector space of f ∈ Fn such that {f ̸= 0}∪rng f is bounded, respectively.

We let

Sn = Bn ∩ S(Mn) ⊂ Fn and we let S+
n = Sn ∩ F+

n ⊂ S+(Mn).

Thus s ∈ Sn if and only if s : Rn → R, rng s is finite, {s = y} is a multirectangle
for each y ∈ R and {s ̸= 0} is bounded and s ∈ S+

n if and only if s ∈ Sn and s ≥ 0.
We let S+

n,↑ be the set of nondecreasing sequences in S+
n . For each s ∈ S+

n,↑ we
let

sup s ∈ F+
n

be such that

sup s(x) = sup{sν(x) : ν ∈ N} for x ∈ Rn

and we let

Inn,↑(s) = sup{I+n (sν) : ν ∈ N+}.

Remark 1.1. We shall prove below the nontrivial Theorem that if s, t ∈ S+
n,↑ and

sup s = sup t then Inn,↑(s) = Inn,↑(t).

Proposition 1.1. Suppose c ∈ [0,∞) and s, t ∈ S+
n,↑. Then

(i) cs ∈ S+
n,↑ and Inn,↑(cs) = cInn,↑(s);

(ii) s+ t ∈ Inn,↑ and Inn,↑(s+ t) = Inn,↑(s) + Inn,↑(t);

(iii) if s ≤ t then Inn,↑(s) ≤ Inn,↑(t).

Proof. Straightforward exercise for the reader. □
1
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Definition 1.2. For each f ∈ F+
n we let

r(f) = inf{I+n (s) : s ∈ S+
n and f ≤ s}

and we let
l(f) = inf{Inn,↑(s) : s ∈ S+

n,↑ and f ≤ sup s}.

Proposition 1.2. We have

r(s) = I+n (s) whenever s ∈ S+
n .

Proof. This should be obvious. □

Corollary 1.1. We have

|In(s)| ≤ r(|s|) whenever s ∈ Sn.

Proof. Indeed, for any s ∈ Sn we have |In(s)| ≤ I+n (|s|). □

Remark 1.2. We also have

l(s) = I+n (s) whenever s ∈ S+
n .

We shall prove this nontrivial fact shortly.

Proposition 1.3. Suppose f ∈ F+
n and r(f) < ∞. Then f ∈ Bn.

Proof. There is s ∈ S+
n such that f ≤ s and this implies rng f ∪ {f > 0} ⊂

rng s ∪ {s > 0}. □

Remark 1.3. On the other hand, if a ∈ Rn and f = ∞1{a} ∈ F+
n and f =

supν ν1{a} so l(f) = 0.

Proposition 1.4. We have
l ≤ r.

Proof. Suppose f ∈ F+
n , s ∈ S+

n and f ≤ s. Let t be the sequence in S+
n whose

range equals s; that is, tν = s for all ν ∈ N. Then sup t = s so

l(f) ≤ Inn,↑(t) = I+n (s)

which is to say l(f) is a lower bound for the set of I+n (u) corresponding to t ∈ S+
n

with f ≤ t. □

Proposition 1.5. Fn ∋ f 7→ r(|f |) and Fn ∋ f 7→ l(|f |) are extended seminorms
on Fn.

Proof. Straightforward exercise for the reader. □

Example 1.1. Let
Q = (0, 1) ∩Q.

We will show that
r(1Q) = 1 and that l(1Q) = 0.

Since 1Q ≤ 1(0,1) ∈ S+
n we find that

r(1Q) ≤ I+n (1(0,1)) = ||(0, 1)|| = 1.

Suppose 1Q ≤ s ∈ I+n . Let y ∈ [0,∞]. Obviously,

s(x) = s(q) ≥ 1 whenever x ∈ s−1[{y}] and q ∈ (0, 1) ∩Q ∩ s−1[{y}].
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It follows that

y ≥ 1 whenever (0, 1) ∩ int s−1[{y}] ̸= ∅
since, in this case, Q ∩ s−1[{y}] ̸= ∅.

Therefore,

I+n (s) =
∑

y∈rng s

y||s−1[{y}]||

=
∑

y∈rng s

y||int s−1[{y}]||

≥
∑

y∈rng s

y||(0, 1) ∩ int s−1[{y}]||

≥
∑

y∈rng s

||(0, 1) ∩ int s−1[{y}]||

=
∑

y∈rng s

||(0, 1) ∩ s−1[{y}]||

= 1.

Thus

r(1Q) ≥ 1.

Let q : N → Q ∩ [0, 1] be univalent with range Q ∩ [0, 1]. For each ν ∈ N let

sν =
ν∑

µ=0

1{qµ} ∈ S+
n .

Note that s ∈ S+
n,↑ is a nondecreasing sequence in S+

n , that

I+1 (sν) =

ν∑
µ=0

||{qµ}|| = 0

and that

1Q = sup s ≤ sup s.

Thus

l(1Q) ≤ Inn,↑(s) = 0.

Theorem 1.1. Suppose A ∈ Mn, B is a nondecreasing sequence in Mn and
A ⊂ ∪∞

ν=0Bν . Then

||A|| ≤ sup
ν

||Bν ||.

Proof. We define the sequence C in Mn by letting C0 = B0 and for each ν ∈ N+

letting Cν = Bν ∼ Bν−1. Then C is disjointed and Bν = ∪ν
µ=0Cµ for each ν ∈ N.

Suppose 1 < λ < ∞. Choose a compact multirectangle K such that K ⊂ A and
||A|| ≤ λ||K||. For each ν ∈ N choose an open multirectangle Uν such that Cν ⊂ Uν

and ||Uν || ≤ λ||Cν ||. Then K ⊂ ∪∞
ν=0Uν so there is N ∈ N such that K ⊂ ∪N

µ=0Uµ.
Thus

λ−1||A|| ≤ ||K|| ≤ || ∪N
µ=0 Uµ|| ≤

N∑
µ=0

||Uµ|| ≤ λ

N∑
µ=0

||Cµ|| = λ||BN ||.

Owing to the arbitrariness of λ the Lemma is proved. □
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Corollary 1.2. Suppose A ∈ Mn, B is a countable subfamily of Mn and A ⊂ ∪B.
Then

||A|| ≤
∑
B∈B

||B||.

Proof. In case B is finite this follows from earlier work. So suppose B is infinite,
let B be an enumeration of B and, for each ν ∈ N, let Cν = ∪ν

µ=0Bµ. Then C is a
nondecreasing sequence in Mn whose union contains A so that, by the preceding
Theorem,

||A|| ≤ sup
ν

||Cν || ≤ sup
ν

ν∑
µ=0

||Bµ|| =
∞∑
ν=0

||Bν ||.

□

Theorem 1.2. We have

l(s) = I+n (s) for any s ∈ S+
n .

Proof. Suppose s ∈ S+
n . Obviously, l(s) ≤ I+n (s)

Suppose t is a nondecreasing sequence in S+
n and s ≤ supν tν . Let Y = (rng s) ∼

{0} and for each y ∈ Y let Ay = {x ∈ Rn : s(x) = y}. Suppose 0 < λ < 1 and for
each y ∈ Y and ν ∈ N let By,ν = {x ∈ Ay : λy < tν(y)}. Then Ay ⊂ ∪∞

ν=0By,ν

so ||Ay|| ≤ supν ||By,ν || by the preceding Theorem. For each y ∈ Y and ν ∈ N we
have λy1By,ν ≤ 1Ay tν and this implies that

λy||Ay|| ≤ λy sup
ν

||B||ν = sup
ν

λy||B||ν ≤ In
(
1Ay tν

)
.

Thus

λIn(s) =
∑
y∈Y

λy||Ay||

≤
∑
y∈Y

sup
ν

In(1Ay tν)

= sup
ν

In

∑
y∈Y

1Ay tν


≤ sup In(tν)

Letting λ ↑ 1 we find that In(s) ≤ sup In(tν). Thus In(s) ≤ l(s). □

Corollary 1.3. We have

|In(s)| ≤ l(|s|) for any s ∈ Sn.

Proof. This follows from the preceding Theorem since |In(s)| ≤ I+n (|s|) for any
s ∈ Sn. □

Definition 1.3. We let

Riemn

be the set of f ∈ Fn such that for each ϵ > 0 there is s ∈ Sn such that r(|f−s|) < ϵ.
Thus Riemn is the closure of Sn with respect to the extended seminormFn ∋ f 7→
r(|f |).

We say f ∈ Fn is Riemann integrable if f ∈ Riemn.
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We let

Lebn

be the set of f ∈ Fn such that for each ϵ > 0 there is s ∈ Sn such that l(|f−s|) < ϵ.
Thus Lebn is the closure of Sn with respect to the extended seminorm Fn ∋ f 7→
l(|f |) of Sn.

We say f ∈ Fn is Lebesgue integrable if f ∈ Lebn.

Proposition 1.6. Suppose f ∈ Fn. Then f ∈ Riemn if and only if for each ϵ > 0
there is g ∈ Riemn such that r(|f − g|) < ϵ and f ∈ Lebn if and only if for each
ϵ > 0 there is g ∈ Lebn such that r(|f − g|) < ϵ.

Proof. This should be obvious. It boils down to the fact the the closure of the
closure equals the closure. □

Theorem 1.3. Riemn is a linear subspace of Fn and there is one and only one
linear function

R : Riemn → R
such that

(i) R(s) = In(s) whenever s ∈ Sn;
(ii) |R(f)| ≤ r(|f |) whenever f ∈ Riemn.

Lebn is a linear subspace of Fn and there is one and only one linear function

L : Lebn → R

such that

(i) L(s) = In(s) whenever s ∈ Sn;
(ii) |L(f)| ≤ l(|f |) whenever f ∈ Lebn.

Proof. Keeping in mind Corollaries 1.1 and 1.3 this follows from two applications
of the Abstract Closure Principle. □

Remark 1.4. Suppose f ∈ Riemn and ϵ > 0. Choose s ∈ Sn such that r(f−s) ≤ ϵ.
Then

|R(f)− In(s)| = |R(f)−R(s)| = |R(f − s)| ≤ r(f − s) ≤ ϵ.

Suppose f ∈ Lebn and ϵ > 0. Choose s ∈ Sn such that l(f − s) ≤ ϵ. Then

|L(f)− In(s)| = |L(f)− L(s)| = |L(f − s)| ≤ l(f − s) ≤ ϵ.

Example 1.2. Let Q be as in the preceding Example. It follows from the foregoing
that

1Q ∈ Leb1.

I claim that

1Q ̸∈ Riem1.

Suppose s ∈ S1, m ∈ S+
1 and |1Q − s| ≤ m. Suppose y ∈ R, z ∈ [0,∞) and

I = int s−1[{y}] ∩m−1[{z}]. Then
|1− y| = |1Q(x)− s(x)| ≤ m(x) = z if x ∈ I ∩ (0, 1) ∩Q

and

|y| = |1Q(x)− s(x)| ≤ m(x) = z if x ∈ I ∩ (0, 1) ∼ Q
from which it follows that 1/2 ≤ z whenever x ∈ I. Thus 1/2 ≤ I+1 (m).
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Definition 1.4. Suppose a, b ∈ R. We let

a ∧ b = min{a, b} and we let a ∨ b = max{a, b}.

Note that

a ∨ b+ a ∧ b = a+ b whenever a, b ∈ R.
For c ∈ R we let

c+ = c ∨ 0 and we let c− = −(c ∧ 0)

and we note that

c = c+ − c− and that |c| = c+ + c−.

Proposition 1.7. Suppose f ∈ Fn and f ≥ 0. Then

f ∈ Riemn ⇒ R(f) ≥ 0 and f ∈ Lebn ⇒ L(f) ≥ 0.

Proof. Suppose ϵ > 0, s ∈ Sn and r(|f − s|) < ϵ. Then |f − s+| ≤ |f − s| so

|R(f)− I+n (s+)| = |R(f)−R(s+)| = |R(f − s+)| ≤ r(|f − s|+) ≤ r(|f − s|) < ϵ

which implies

Riem(f) ≥ I+n (s+)− ϵ ≥ −ϵ.

Owing to the arbitrariness of ϵ we infer that R(f) ≥ 0.
In the same way one shows that if f ∈ Lebn then L(f) ≥ 0. □

Corollary 1.4. We have

f, g ∈ Riemn and f ≤ g ⇒ R(f) ≤ R(g)

and

f, g ∈ Lebn and f ≤ g ⇒ L(f) ≤ L(g).

Proof. Apply the preceding Proposition to g − f . □

Theorem 1.4. Suppose f ∈ Riemn. Then f ∈ Lebn and

R(f) = L(f).

Exercise 1.1. Prove Theorem 1.4.

Exercise 1.2. Show that the product of two Riemann integrable functions is Rie-
mann integrable.

Theorem 1.5. Suppose f ∈ Fn, f ≥ 0 and 0 ≤ c < ∞. Then

f ∈ Riemn ⇒ f ∧ c ∈ Riemn

and

f ∈ Lebn ⇒ f ∧ c ∈ Lebn.

Suppose f, g ∈ Fn. Then

f, g ∈ Riemn ⇒ f ∧ g, f ∨ g ∈ Riemn

and

f, g ∈ Lebn ⇒ f ∧ g, f ∨ g ∈ Lebn.
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Lemma 1.1. Suppose a, b, c, d ∈ R. Then

|a ∧ b− a ∧ d| ≤ |b− d|,
|a ∧ b− c ∧ d| ≤ |a− c|+ |b− d|,
|a ∨ b− a ∨ d| ≤ |b− d|,
|a ∨ b− c ∨ d| ≤ |a− c|+ |b− d|.

Proof. To prove the first inequality, suppose b < d and consider the three cases
a ≤ b, a < b < d, d ≤ a; then note that the inequality is symmetric in b and d.

To prove the second inequality note that

|a ∧ b− c ∧ d| ≤ |a ∧ b− a ∧ d|+ |a ∧ d− c ∧ d|

and then use the first inequality.
One may use the same techniques to prove the third and fourth inequality. □

Exercise 1.3. Prove Theorem 1.5. Make use of the preceding Remark and Lemma.

Definition 1.5. Suppose A ⊂ Rn and f is a real valued function whose domain
contains A. We let

fA : Rn → R

be such that

fA(x) =

{
f(x) if x ∈ A,

0 else.

We set

RA(f) = R(fA) if fA ∈ Riemn

in which case we say f is Riemann integrable over A and we set

LA(f) = L(fA) if fA ∈ Lebn

in which case we say f is Lebesgue integrable over A. So, for example, if
A = (a, b), ∫ b

a

f(x) dx

is, by definition, one or both of R(a,b)(f) or L(a,b)(f).

Proposition 1.8. Suppose f ∈ Fn and S ∈ Mn. Then

f ∈ Riemn ⇒ 1Sf ∈ Riemn

and

f ∈ Lebn ⇒ 1Sf ∈ Lebn.

Exercise 1.4. Prove Proposition 1.8.
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2. The theory of the Lebesgue integral.

2.1. The Monotone Convergence Theorem. The theory of the Lebesgue inte-
gral rest on the following Theorem.

Theorem 2.1. (The Monotone Convergence Theorem.) Suppose f is a
nondecreasing sequence in F+

n . Then

(1) l(sup
ν

fν) = sup
ν

l(fν).

Proof. Let a and b be the left and right hand sides of (1), respectively. Owing to
the monotonicity of l, we find that b ≤ a. Thus we need only show that a ≤ b and
we may assume that b < ∞.

To this end, let ϵ > 0. For each ν ∈ N let sν ∈ S+
n,↑ be such that fν ≤ sup sν and

Inn,↑(sν) ≤ l(fν) + 2−ν−1ϵ.

For each µ, ν ∈ N with µ ≤ ν we let

Sν
µ =

ν∨
η=µ

sη ∈ Inn,↑.

We define the sequence t by letting

tν = (Sν
0 )ν ∈ S+

n .

For any ν ∈ N we have

tν = (Sν
0 )ν ≤ (Sν+1

0 )ν ≤ (Sν+1
0 )ν+1 = tν+1

so t ∈ S+
n,↑ and

(1) I+n (tν) = I+n ((Sν
0 )ν) ≤ Inn,↑(S

ν
0 ).

Moreover, for any ν, ξ ∈ N, we have

(sν)ξ ≤ (sν)ν∨ξ ≤ (Sν∨ξ
0 )ν∨ξ = tν∨ξ ≤ sup t;

it follows that fν ≤ sup t for any ν ∈ N which in turn implies that sup f ≤ sup t so

l(sup f) ≤ Inn,↑(t).

We will complete the proof by showing that

(2) Inn,↑(t) ≤ sup
ν

l(fν) + ϵ.

Suppose µ, ν ∈ N and µ < ν. Since sµ ≤ Sν
µ we have

fµ ≤ fν ∧ fµ+1 ≤ (sup sν) ∧ (supSν
µ+1) = sup(sν ∧ Sν

µ+1).

Using the fact that a ∧ b+ a ∨ b = a+ b whenever a, b ∈ [0,∞] we find that

sµ ∧ Sν
µ+1 + Sν

µ = sµ ∧ Sν
µ+1 + sµ ∨ Sν

µ+1 = sµ + Sν
µ+1;

thus

l(fµ) + Inn,↑(S
ν
µ) ≤ Inn,↑(sµ ∧ Sn

µ+1) + Inn,↑(S
ν
µ)

= Inn,↑(sµ ∧ Sn
µ+1 + Sν

µ)

= Inn,↑(sµ + Sν
µ+1)

= Inn,↑(sµ) + Inn,↑(S
ν
µ+1)

≤ l(fµ) + 2−µ−1ϵ+ Inn,↑(S
ν
µ+1).
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Since l(fµ) < ∞ we obtain

Inn,↑(S
ν
µ) ≤ Inn,↑(S

ν
µ+1) + 2−µ−1ϵ;

Summing from µ = 0 to ν and using (1) we find that

I+n (tν) ≤ Inn,↑(S
ν
0 ) ≤ Inn,↑(S

ν
ν ) + ϵ = Inn,↑(sν) + ϵ < l(fν) + ϵ−ν−1 + ϵ

thereby establishing (2). □

Corollary 2.1. ( Fatou’s Lemma.) Suppose f is a sequence in F+
n . Then

l(lim inf
ν

fν) ≤ lim inf
ν

l(fν).

Proof. For each ν ∈ N let Fν = infµ≥ν fµ, note that supν Fν = lim infν fν and
apply the Monotone Convergence Theorem to F . □

Corollary 2.2. Suppose f is a nondecreasing sequence in F+
n . Then

l

( ∞∑
ν=0

fν

)
≤

∞∑
ν=0

l(fν).

Proof. We have

l

( ∞∑
ν=0

fν

)
= l

(
sup
ν

ν∑
µ=0

fµ

)
= sup

ν
l

(
ν∑

µ=0

fµ

)
≤ sup

ν

ν∑
µ=0

l(fµ) =
∞∑
ν=0

l(fν).

□

2.2. Basic theory of Lebesgue integration.

Theorem 2.2. Suppose f ∈ F+
n ∩ Lebn. Then

l(f) = L(f).

Proof. Let ϵ > 0. Choose s ∈ Sn such that l(|f − s|) < ϵ/2. Applying l to the
inequalities f ≤ |f − s+|+ s+ and s+ ≤ |f − s+|+ f we infer that |l(f)− l(s+)| ≤
l(|f − s+|). Also, |L(f) − L(s+)| ≤ l(|f − s+|). Since l(s+) = L(s+) and since
|f − s+| ≤ |f − s| we find that |l(f)− L(f)| < ϵ □

Lemma 2.1. Suppose f is a sequence in F+
n ∩ Lebn such that

(i) supν fν(x) < ∞ for each x ∈ Rn and
(ii) l(supν fν) < ∞.

Then supν fν ∈ Lebn.

Proof. Replacing fν by sup0≤µ≤ν fµ if necessary we may assume without loss of
generality that f is nondecreasing.

Let ϵ > 0. Since (ii) holds we may choose N ∈ N such that

sup
ν

l(fν) ≤ l(fN ) + ϵ.

It follows from the preceding Proposition that

l(fν − fN ) = L(fν − fN ) = L(fν)− L(fN ) = l(fν)− l(fN )

for any ν ∈ N so that
sup
ν

l(fν − fN ) ≤ ϵ.
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Since f is nondecreasing we may use the Monotone Convergence Theorem to infer
that

l((sup
ν

fν)− fN ) = l(sup
ν
(fν − fN )) = sup

ν
l(fν − fN ) ≤ ϵ.

□

Lemma 2.2. Suppose f is a sequence in F+
n ∩ Lebn. Then infν fν ∈ Lebn.

Proof. For each ν ∈ N let Fν = inf0≤µ≤ν fµ ∈ Lebn. Evidently, F is nonincreasing
so N ∋ ν 7→ F0 − Fν is nondecreasing. Since

inf
ν
Fν = F0 − sup

ν
(F0 − Fν)

and since infν fν = infν Fν this Lemma follows from Lemma 2.2. □

Theorem 2.3. Suppose F ∈ Fn, F ≥ 0, l(F ) < ∞ and there is a sequence f in
Lebn such that

F (x) = lim
ν→∞

fν(x) for x ∈ Rn.

Then F ∈ Lebn.

Proof. Choose a s ∈ S+
n,↑ such that F ≤ sup s and Inn,↑(s) < ∞. Using Lemmas 2.1

and 2.2 we infer that, for each ξ ∈ N,

F ∧ sξ = inf
ν

sup
µ≥ν

fµ ∧ sξ ∈ Lebn.

Since F = supξ F ∧ sξ the Theorem follows from Lemma 2.1. □

Theorem 2.4. (The Lebesgue Dominated Convergence Theorem.) Sup-
pose

(i) f is a sequence in Lebn and F ∈ Fn is such that

lim
ν→∞

fν(x) = F (x) for all x ∈ Rn;

(ii) g is a sequence in Lebn such that

|fν | ≤ gν , ν ∈ N;

(iii) G ∈ F+
n ,

lim
ν→∞

gν(x) = G(x) for all x ∈ Rn and lim
ν→∞

l(gν) = l(G) < ∞.

Then F ∈ Lebn and

lim
ν→∞

l(|F − fν |) = 0.

In particular,

lim
ν→∞

L(fν) = L(F ).

Proof. For each ν ∈ N let hν = G + gν − |F − fν | ∈ F+
n ∩ Lebn. We know from

the previous Theorem that G and |F − fν | = limµ→∞ |fµ − fν |, ν ∈ N are in Lebn

Thus, for any ν ∈ N,

L(hν) = L(G) + L(gν)− L(|F − fν |)
so

l(hν) = l(G) + l(gν)− l(|F − fν |).
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By Fatou’s Lemma we have

2l(G) = l(lim inf
ν→∞

hν) ≤ lim inf
ν→∞

l(hν).

Since
lim inf
ν→∞

l(hν) = 2l(G)− lim sup
ν→∞

l(|F − fν |).

it follows that
lim sup
ν→∞

l(|F − fν |) = 0.

This in turn implies that F ∈ Lebn.
The last conclusion follows from the observation that

|L(F )− L(fν)| = |L(F − fν)| ≤ l(|F − fν |) for any ν ∈ N.
□

Definition 2.1. We let

Leb+
n =

{
sup
ν

fν : f is a nondecreasing sequence in F+
n ∩ Lebn

}
.

Proposition 2.1. Suppose f is a sequence in Leb+
n . Then sup f ∈ Leb+

n .

Proof. For each ν ∈ N choose a nondecreasing sequence gν ∈ Leb+
n such that

fν = sup gν . For each ν ∈ N let

hν =
ν∨

µ=0

ν∨
ξ=0

(gµ)ξ ∈ Leb+
n .

Then h is nondecreasing and f = suph. □
Proposition 2.2. Suppose f, g ∈ Leb+

n and c ∈ [0,∞]. Then cf , f + g, f ∧ g and
f ∨ g belong to Leb+

n .

Proof. Straightforward exercise. □
Theorem 2.5. Suppose f, g ∈ Leb+

n . Then

l(f + g) = l(f) + l(g).

Proof. Let p, q be nondecreasing sequences F+
n ∩ Lebn with suprema f and g,

respectively. Using the Monotone Convergence Theorem three times we calculate

l(f + g) = sup
ν

l(pν + qν)

= sup
ν

L(pν + qν)

= sup
ν

L(pν) + L(qν)

= sup
ν

l(pν) + l(qν)

= l(f) + l(g).

□
Theorem 2.6. Suppose f is a sequence in Leb+

n . Then
∑∞

ν=0 fν ∈ Leb+
n and

l

( ∞∑
ν=0

fν

)
=

∞∑
ν=0

l(fν).
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Proof. Since
∑∞

ν=0 fν = supν
∑ν

µ=0 fµ we infer from Propositions 2.1 and 2.2 that∑∞
ν=0 fν ∈ Leb+

n . Moreover, by the Monotone Convergence Theorem,

l

( ∞∑
ν=0

fν

)
= l

(
sup
ν

∞∑
µ=0

fµ

)
= sup

ν
l

( ∞∑
µ=0

fµ

)
= sup

ν

( ∞∑
µ=0

l(fµ)

)
=

∞∑
ν=0

l(fν).

□

2.3. Lebesgue measure. Sets of measure zero. This will come in handy.

Definition 2.2. Suppose A ⊂ Rn. We let

Leb
n(A) = inf

{∑
R∈R

||Rν || : R ⊂ Rn, R is countable, and A ⊂ ∪R

}
and call this nonnegative extended real number the Lebesgue measure of A. We
say A has measure zero if Lebn(A) = 0.

Proposition 2.3. Suppose A ⊂ Rn. Then

Leb
n(A) = inf{sup

ν
||Mν || : M is a nondecreasing sequence in Mn and A ⊂ ∪∞

ν=0Mν}.

Proof. Let a and b be the left and right sides of the equality to be proved.
Suppose R is a sequence in Rn. For each ν ∈ N let Mν = ∪ν

µ=0Rµ. Then M is
a nondecreasing sequence in Mn, ∪∞

ν=0Rν = ∪∞
ν=0Mn and

sup
ν

||Mν || ≤ sup
ν

ν∑
µ=0

||Rµ|| =
∑
ν=0

||Rν ||.

It follows that b ≤ a.
Suppose M is a nondecreasing sequence in Mn. Let L0 = M0 and for each

ν ∈ N+ let Lν = Mν ∼ Mν−1. Then L is a disjointed sequence in Mn and
∪∞
ν=0Lν = ∪∞

ν=0Mν . For each ν ∈ N choose a finite disjointed family Sν of rectangles
with union Mν . Let R = ∪∞

ν=0Sν . Then R is a countable family of rectangles with
union ∪∞

ν=0Mν . It follows that a ≤ b. □

Theorem 2.7. Suppose A ⊂ Rn. Then Lebn(A) = l(1A).

Proof. Suppose t ∈ S+
n,↑ and 1A ≤ sup t. Suppose 0 < σ < ∞. For each ν ∈ N, let

Mν = {tν > σ} ∈ Mn, note that σ1Mν ≤ 1{tν>σ} so that σ||Mν || ≤ I+n (tν). Now
A ⊂ ∪∞

ν=0Mν and M is an increasing sequence in Mn so

σLebn(A) ≤ σ sup
ν

||Mν || = sup
ν

Iν(tν) = Inn,↑(t).

Owing to the arbitrariness of σ it follows Proposition 2.3 that Lebn(A) ≤ l(1A).
On the other hand, suppose B is a sequence in Rn such that A ⊂ ∪∞

ν=0Bν . Let
t be the sequence such that, for each ν ∈ N, tν =

∑ν
µ=0 1Bµ . Evidently, t ∈ S+

n,↑
and 1A ≤ sup t. Thus

l(1A) ≤ Inn,↑(t) =

∞∑
ν=0

I+n (1Bν ) =

∞∑
ν=0

||Bν ||.

It follows that l(1A) ≤ Leb
n(A). □
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Theorem 2.8. Suppose M is a multirectangle in Rn. Then

Leb
n(M) = ||M ||.

Proof. Apply Theorem 2.7 and Theorem1.2. □

Proposition 2.4. The following statements hold.

(i) |∅) = 0;
(ii) if A ⊂ B ⊂ Rn then Lebn(A) ≤ Leb

n(B).
(iii) if A is a nondecreasing sequence of subsets of Rn the

Leb
n(∪∞

ν=0Aν) = sup
ν
Leb

n(Aν);

(iv) If A is a countable family of subsets of Rn then

Leb
n(∪A) ≤

∞∑
A∈A

Leb
n(A).

Proof. (i) and (ii) are direct consequences of the definition.
Suppose A is a nondecreasing sequence of subsets of Rn. Using Theorem 2.7 and

the Monotone Convergence Theorem we find that

Leb
n(∪∞

ν=0Aν) = l
(
1∪∞

ν=0Aν

)
= sup

ν
l (1Aν ) = sup

ν
Leb

n(Aν)

so (iii) holds.
If A is a sequence of subsets of Rn then

1∪∞
ν=0Aν = sup

ν
1∪ν

µ=0Aµ ≤
∞∑
ν=0

1Aν

so (iv) follows from Theorem 2.7 and Theorem 2.2. □

Corollary 2.3. Any countable set is a set of measure zero. The union of a countable
family of sets of measure zero is a set of measure zero.

Proposition 2.5. If a ∈ Rn and A ⊂ Rn then Lebn(a + A) = Leb
n(A). (That

is, outer measure is translation invariant.)

Proof. This follows from the corresponding fact for multirectangles. □

2.4. Nonmeasurable sets. There exists a countable disjointed family C of subsets
of R such that

(i) there is c ∈ (0,∞) such that Lebn(C) = c for C ∈ C;
(ii) 0 < Leb

n(∪C) < ∞;

it follows that

Leb
n(∪C) <

∑
C∈C

Leb
n(C) = ∞.

Remark 2.1. I’m fairly sure this is equivalent to certain forms of the Axiom of
Choice. Consult Professor Hodel, the local set theory expert, if you want more
information about this.

Remark 2.2. Let C be an enumeration of C and for each ν ∈ N let Dν = ∪ν
µ=0Cµ.

Then for some ν we have

Leb
n(Dν ∪ Cν+1) < Leb

n(Dν) + Leb
n(Cν+1).
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Proof. We’re going to be terse! Let B be the range of a choice function for

{x+Q : x ∈ R}.

(In the parlance of algebra, B is a set of coset representatives for the reals modulo
the rationals.) It follows that

{q +B : q ∈ Q}

is a countable partition of R. Now

∞ = Leb
n(R) ≤

∑
q∈Q

Leb
n(q +B) =

∑
q∈Q

Leb
n(B)

so

Leb
n(B) > 0.

Since

Leb
n(B) ≤

∑
z∈Z

Leb
n(B ∩ [z, z + 1))

there is z ∈ Z such that

Leb
n(B ∩ [z, z + 1)) > 0.

For each q ∈ Q let

Cq = q + (B ∩ [z, z + 1)).

Then

Leb
n(Cq) = Leb

n(C0) > 0 whenever q ∈ Q.

Let

C = {Cq : q ∈ Q, 0 ≤ q ≤ 1}.
Then

Leb
n(∪C) ≤ Leb

n([z, z + 2)) = 2

but ∑
C∈C

Leb
n(C) = ∞Leb

n(C0) = ∞.

□

2.5. Lebesgue measurable sets and functions. To avoid the situation we en-
countered in the preceding subsection we define a very useful class of set on which
Leb

n behaves very well.

Definition 2.3. We say a subset E of Rn is Lebesgue measurable if for each
ϵ > 0 and each bounded rectangle R in Rn there is a multirectangle M such that
M ⊂ R and

Leb
n(R ∩ ((E ∼ M) ∪ (M ∼ E))) < ϵ.

We let

Ln

be the family of Lebesgue measurable sets.

Theorem 2.9. Suppose E ⊂ Rn. Then

E ∈ Ln ⇔ 1E ∈ Leb+
n .
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Proof. For each ν ∈ N let Rν = ∩n
i=1{x ∈ Rn : |xi| < ν} ∈ Rn.

Suppose E ∈ Ln, ν ∈ N and ϵ > 0. Choose M ∈ Mn such that M ⊂ Rν and

Leb
n(Rν ∩ ((E ∼ M) ∪ (M ∼ E))) < ϵ.

Then

|1Rν∩E − 1Mν | = 1Rν∩((E∼M)∪(M∼E))

so

l (1Rν∩E − 1Mν ) ≤ l
(
1Rν∩((E∼M)∪(M∼E))

)
= Leb

n(Rν∩((E ∼ M)∪(M ∼ E))) < ϵ.

Owing to the arbitrariness of ϵ we infer that 1Rν∩E ∈ Lebn. Since 1Rν∩E ↑ 1E as
ν ↑ ∞ we infer that 1E ∈ Leb+

n .
Suppose 1E ∈ Leb+

n . Let f be a nondecreasing sequence in Lebn such that
f ≥ 0 and sup f = 1E . Suppose R is a bounded rectangle in Rn. Then 1Rf is a
nondecreasing sequence in Lebn such that 1Rf ≥ 0 and sup 1Rf = 1R1E = 1R∩E .
Let ϵ > 0. By the Mononone Convergence Theorem there is N ∈ N such that
l (1R∩E − 1RfN ) < ϵ/4. Choose s ∈ Sn such that l (1RfN − s) < ϵ/4 and let
M = R ∩ {s ≥ 1/2} ∈ Mn. Then

1

2
1R∩((E∼M)∪(M∼E)) =

1

2

∣∣1R∩(E∼M) − 1R∩(M∼E)

∣∣
≤ |s− 1R∩E |
≤ |s− 1RfN |+ |1RfN − 1R∩E | ;

it follows that

Leb
n(R ∩ ((E ∼ M) ∪ (M ∼ E))) = l

(
1R∩((E∼M)∪(M∼E))

)
< ϵ

so that E is Lebesgue measurable.
□

Theorem 2.10. The following statements hold.

(i) Mn ⊂ Ln.
(ii) E ∈ Ln and Lebn(E) < ∞ if and only if for each ϵ > 0 there is a bounded

multirectangle M such that

Leb
n((E ∼ M) ∪ (M ∼ E)) ≤ ϵ.

(iii) E ∈ Ln if and only if there is nondecreasing sequence F in {G ∈ Ln :
Leb

n(G) < ∞} such that E = ∪∞
ν=0Fν .

(iv) If E,F ∈ Ln then E ∪ F,E ∩ F,E ∼ F ∈ Ln and

Leb
n(E ∪ F ) + Leb

n(E ∩ F ) = Leb
n(E) + Leb

n(F ).

If E is a countable nonempty family of Lebesgue measurable subsets of
Rn the following assertions hold:

(v) ∪E and ∩E are Lebesgue measurable;
(vi) if E is disjointed then

Leb
n(∪E) =

∑
E∈E

Leb
n(E);

(vii) if E is nested then

Leb
n(∪E) = sup{Lebn(E) : E ∈ E};
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(viii) if E is nested and Lebn(E) < ∞ for some E ∈ E then

Leb
n(∩E) = inf{Lebn(E) : E ∈ E}.

Proof. Exercise for the reader. □

Remark 2.3. In particular, the Lebesgue measurable subsets of Rn form a σ-
algebra of subsets of Rn.

Proposition 2.6. Suppose E ⊂ Rn. Then

Leb
n(E) = inf{Lebn(G) : G is open and E ⊂ G}.

Proof. Exercise for the reader. This is a straightforward consequence of the defini-
tion of Lebn. □
Theorem 2.11. Suppose E ⊂ Rn and Leb

n(E) < ∞. Then E is Lebesgue
measurable if and only if

Leb
n(E) = sup{Lebn(K) : K is compact and K ⊂ E}.

Proof. Exercise for the reader. Here’s a start. First reduce to the case when E is
bounded. Next, given ϵ > 0 choose a bounded open subset G such that E ⊂ G and
Leb

n(E) ≤ Leb
n(G) + ϵ. Now consider E ∼ G. □

Definition 2.4. Suppose f : Rn → R. We say f is Lebesgue measurable if
f−1[U ] ∈ Ln whenever U is an open subset Rn

Proposition 2.7. Suppose f : Rn → R. The following are equivalent.

(i) f is Lebesgue measurable.
(ii) {x ∈ Rn : f(x) > c} ∈ Ln whenever c ∈ R.
(iii) {x ∈ Rn : f(x) ≥ c} ∈ Ln whenever c ∈ R.
(iv) {x ∈ Rn : f(x) < c} ∈ Ln whenever c ∈ R.
(v) {x ∈ Rn : f(x) ≤ c} ∈ Ln whenever c ∈ R.

Proof. Since

{x ∈ Rn : f(x) ≥ c} = ∩∞
ν=1

{
x ∈ Rn : f(x) > c− 1

ν

}
we see that that (ii) implies (iii). Since

{x ∈ Rn : f(x) < c} = Rn ∼ {x ∈ Rn : f(x) ≥ c}
we see that (iii) implies (iv). Since

{x ∈ Rn : f(x) ≤ c} = ∩∞
ν=1

{
x ∈ Rn : f(x) < c+

1

ν

}
we see that (iv) implies (v). Since

{x ∈ Rn : f(x) > c} = Rn ∼ {x ∈ Rn : f(x) ≤ c}
we see that (v) implies (ii). Thus (ii),(iii),(iv) and (v) are equivalent.

(i) obviously implies (ii). Suppose (ii) holds. Then, as (iv) holds,

{x ∈ Rn : a < f(x) < b} ∈ Ln whenever −∞ < a < b < ∞.

Let U be an open subset of R. Let I be the family of open subintervals of U with
rational endpoints. Then, as I is countable, we find that

f−1[U ] = ∪{f−1[I] : I ∈ I} ∈ Ln
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Thus (i) holds. □

Corollary 2.4. Suppose N is a positive integer, fi : Rn → R, i = 1, . . . , N are
Lebesgue measurable functions, and

M : RN → R

is continuous. Then

Rn ∋ x 7→ M(f1(x), . . . , fN (x))

is Lebesgue measurable.

Corollary 2.5. The set of Lebesgue measurable functions is closed under the
arithmetic operation as well as the lattice operations.

Proposition 2.8. Suppose f is a sequence of Lebesgue measurable functions and
F : Rn → R is such that

lim
ν→∞

fν(x) = F (x) whenever x ∈ Rn.

Then F is Lebesgue measurable.

Proof. Suppose c ∈ R. Then

{x ∈ Rn : F (x) > c} = ∪∞
n=1 ∪∞

N=0 ∩∞
ν=N

{
x ∈ Rn : fν(x) > c+

1

n

}
.

□

Lemma 2.3. Suppose f : Rn → R, c ∈ R, E = {x ∈ Rn : f(x) > c} and

gh(x) =
1

h
[f ∧ (c+ h)− f ∧ c] for h ∈ (0,∞).

Then

(i) gh ≤ gk if 0 < k < h < ∞;
(ii) 1E = sup0<h<∞ gh.

Proof. To prove (i) we suppose a ∈ Rn and 0 < k < h < ∞ and we observe that

f(a) < c ⇒ gh(a) = 0 = gk(a),

c ≤ f(a) < c+ k ⇒ gh(a) =
1

h
[f(a)− c] ≤ 1

k
[f(a)− c] = gk(a),

c+ k ≤ f(a) < c+ h ⇒ gh(a) =
1

h
[f(a)− c] ≤ 1 = gk(a),

c+ h ≤ f(a) ⇒ gh(a) = 1 = gk(a).

(ii) is evident. □

Lemma 2.4. Suppose

f : Rn → R;
c is a a sequence of positive real numbers such that

lim
ν→∞

cν = 0 and
∞∑
ν=0

cν = ∞;
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and E is the sequence of subsets of Rn defined inductively by setting E0 = {x ∈
Rn : f(x) > c0} and requiring that

Eν+1 =

{
x ∈ Rn : f(x) >

ν∑
µ=0

cµ1Eµ

}
whenever ν > 0.

Then

f =
∞∑
ν=0

cν1Eν .

Proof. Straightforward exercise. □
Theorem 2.12. Suppose f : Rn → R. Then f ∈ Lebn if and only if l(f) < ∞
and f is Lebesgue measurable.

Proof. Suppose f ∈ Lebn. Let c ∈ R. That {x ∈ Rn : f(x) > c} ∈ Ln follows the
first of the two preceding Lemmas and our earlier theory.

Suppose l(f) < ∞ and f is Lebesgue measurable. Writing f = f+ − f− we see
we need only consider the case f ≥ 0. Let c be a sequence of positive real numbers
such that limν→∞ cν = 0 and

∑∞
ν=0 cν = ∞ and let the sequence E be as in the

preceding Lemma so that

f =
∞∑
ν=0

cν1Eν
.

Note that Eν ∈ Ln. That f ∈ Lebn follows from earlier theory. □

Theorem 2.13. (The absolute continuity of the integral.) Suppose f ∈
Lebn. Then for each ϵ > 0 there is δ > 0 such that

E ∈ Ln and |E| < δ ⇒ LE(|f |) < ϵ.

Proof. For each nonnegative integer ν let gν = |f | ∧ ν. Since gν ↑ |f | as ν ↑ ∞
we infer from the Monotone Convergence Theorem that l(gν) ↑ l(|f |) as ν ↑ ∞.
Choose a positive integer N such that

l(|f |)− l(gN ) <
ϵ

2
.

By the preceding theory, gN ∈ Lebn. Let δ = ϵ
2N . If E ∈ Ln and |E| < δ then

|f |1E = (|f | − gN )1E + gN1E ≤ |f | − gN +N1E

so that

LE(|f |) = L(|f |1E) ≤ L(|f | − gN +N1E) = L(|f |)− L(gN ) +N |E| < ϵ.

□

3. More on the Riemann integral.

The Riemann integral isn’t so great but everybody studies it because it’s easier
to define.

The Definition we gave of the Riemann integral is not the standard one. Now
we show that it is equivalent to the standard one.
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Definition 3.1. Suppose f ∈ Bn and δ > 0. We let

RiemSumδ(f)

be the set of sums ∑
R∈R

f(c(R)||R||

where

(i) R is a finite nonoverlapping family of nonempty bounded rectangles;
(ii) diamR < δ whenever R ∈ R;
(iii) {f ̸= 0} ⊂ ∪R;
(iv) c is a choice function for R.

The members of RiemSumδ(f) are called Riemann sums for f with mesh
diameter at most δ.

Theorem 3.1. Suppose f ∈ Bn. Then f ∈ Riemn if and only if

inf{diamRiemSumδ(f) : δ > 0} = 0

in which case

∩0<δ<∞RiemSumδ(f) = {R(f)}.

Proof. For each ν ∈ N+ let Cν = {x ∈ Rn : |xi| < ν}. Let N be the least ν ∈ N
such that {x ∈ Rn : f(x) ̸= 0} ⊂ Cν .

Part One. Suppose inf{diamRiemSumδ(f) : 0 < δ < ∞} = 0. Let δ > 0
and let R be a finite disjointed family of nonempty rectangles such that CN = ∪R
and diamR < δ for R ∈ R.

Let c and c be choice functions for R such that

f(c(R)) ≤ inf
R

f + δ and sup
R

f ≤ f(c(R)) + δ whenever R ∈ R.

Let

S =
∑
R∈R

f(c(R))||R||; let S =
∑
R∈R

f(c(R))||R||;

let

s =
∑
R∈R

(inf
R

f)1R ∈ Sn; and let m =
∑
R∈R

(sup
R

f − inf
R

f)1R ∈ S+
n .

Then |f − s| ≤ m and, since S, S ∈ RiemSumδ(f), we find that

I(m) =
∑
R∈R

(sup
R

f − inf
R

f)||R||

≤
∑
R∈R

(f(c(R))− f(c(R)) + 2δ||R||

≤ S − S + 2δ||CN ||
≤ diamRiemSumδ(f) + 2δ||CN ||.

Owing to the arbitrariness of δ it follows that f ∈ Riemn.
Part Two. Suppose f ∈ Riemn and ϵ > 0. Choose s ∈ Sn, m ∈ S+

n such
that |f − s| ≤ m, I+n (m) < ϵ/4. We will show that there is δ > 0 such that if Σ ∈
Riemsumδ(f) then |Σ−I(s)| < ϵ/2; that will imply that diamRiemsumδ(f) < ϵ.
Since |f − 1CN+1s| ≤ 1CN+1m we may assume that {x ∈ Rn : s(x) ̸= 0 or m(x) ̸=
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0} ⊂ CN+1. It follows from ?? that there is finite disjointed family of rectangles Q
and functions σ : Q → R and µ : Q → [0,∞) such that

s =
∑
Q∈Q

σ(Q)1Q and m =
∑
Q∈Q

µ(Q)1Q.

Suppose 0 < δ < 1 and R and c are as in Definition ??. We may assume that
∪R ⊂ CN+1 since ifR′ = {R ∈ R: R ∼ CN+1 ̸= ∅} then, as δ < 1, ∪R′ ⊂ Rn ∼ CN

so f(c(R)) = 0 for R ∈ R′ and
∑

R∈R f(c(R))||R|| =
∑

R∈R∼R′ f(c(R))||R||. We
may also assume that ∪R = CN+1 ... Let

G = {(Q,R) ∈ Q×R : c(R) ∈ Q} and let B = {(Q,R) ∈ Q×R : c(R) ̸∈ Q}.
Then

|In(s)− Σ| ≤
∑

(Q,R)∈Q×R

|σ(Q)− f(c(R))||Q ∩R||

≤
∑

(Q,R)∈G

µ(Q)||Q ∩R||+
∑

(Q,R)∈B

M ||Q ∩R||

≤ I(m) +M
∑

(Q,R)∈B

||Q ∩R||.

Now if (Q,R) ∈ B and ||Q ∩R|| ̸= 0 then R is contained in the
√
nδ neighborhood

of bdryQ □

3.1. The fundamental theorems of calculus.

Theorem 3.2. Suppose −∞ < a < b < ∞, f : [a, b] → R, f is differentiable at
each point of (a, b) and f ′ is Riemann integrable on (a, b). Then

(3) R(a,b)(f
′) dx = f(b)− f(a).

Remark 3.1. Using more traditional notation, (6) says∫ b

a

f ′(x) dx = f(b)− f(a).

Remark 3.2. Suppose −∞ < a < b < ∞, f : (a, b) → R, f is differentiable at each
point of (a, b) and f ′ is Riemann integrable on (a, b). Then there is M ∈ [0,∞)
such that |f ′(x)| ≤ M whenever a < x < b. This implies |f(x)− f(y)| ≤ M |x− y|
whenever a < x < y < b which is to say that Lip f ≤ M . In particular, f has a
unique continuous extension to the closure [a, b] of (a, b).

Exercise 3.1. Prove Theorem 3.2. Note that

f(b)− f(a) =
N∑
i=1

f(xi)− f(xi−1)

whenever N ∈ N+ and a = x0 ≤ x1 ≤ · · · ≤ xN = b. Use the Mean Value Theorem
to construct Riemann sums which do the job.

Theorem 3.3. Suppose f : (a, b) → R, f is Riemann integrable and

F (x) = R(a,x)(f) for x ∈ (a, b).

Then

(4) F ′(x) = f(x) whenever x ∈ (a, b) and f is continuous at x.
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Remark 3.3. Using more traditional notation, (6) says

d

dx

(∫ x

a

f ′(t) dt

)
= f(x).

Exercise 3.2. Prove Theorem 3.3. Don’t hesitate to use the theory already devel-
oped.

Exercise 3.3. Suppose 1 < p < ∞. Let f, g ∈ F+
n be such that

f(x) =

{
1
xp if 0 < x < 1,

0 else
and g(x) =

{
1
xp if 1 < x < ∞,

0 else.

Show that l(f) < ∞ if and only if p < 1 and show that l+(g) < ∞ if and only if
p > 1.

(Big Hint: Use Theorem 3.2 together with the Mononotone Convergence Theo-
rem of the next set of notes.)

3.2. Characterization of Riemann integrability. The following Theorem char-
acterizes Riemn in a very precise way.

Theorem 3.4. Suppose f ∈ Bn. Then f ∈ Riemn if and only if the set of
discontinuities of f has measure zero.

We will now prove this Theorem. So suppose f ∈ Bn. Let M ∈ [0,∞) be such
that |f | ≤ M and let S be a compact rectangle such that {x ∈ Rn : f(x) ̸= 0} ⊂ S.
For each positive integer ν let

Dν = {x ∈ Rn : oscf(x) ≥ 1/ν}
and let E = ∪∞

ν=1Eν . Then E is the set of discontinuities of f .
Suppose ν ∈ N+. By an earlier exercise about oscf , Dν is closed. Since Dν ⊂

{f ̸= 0} we find that Dν is bounded. Thus Dν is compact.

Lemma 3.1. Suppose f ∈ Riemn. There is a disjointed family R of rectangles
such that ∪R = S and ∑

R∈R
(sup f [R]− inf f [R])||R|| ≤ ϵ.

Proof. Let s ∈ Sn and m ∈ S+
n be such that |f − s| ≤ m and I+n (m) ≤ ϵ/2.

Replacing s and m by 1Ss and 1Sm if necessary we may assume without loss of
generality that {s ̸= 0} ∪ {m > 0} ⊂ S. Choose R, σ, µ such that R is a finite
disjointed family of rectangles with union S; σ, µ are functions with domain R and
ranges contained in R and [0,∞), respectively;

s =
∑
R∈R

σ(R)1R and m =
∑
R∈R

µ(R)1R.

Suppose R ∈ R. Then

σ(R)− µ(R) = s(x)−m(x) ≤ f(x) ≤ s(x) +m(x) = σ(R) + µ(R) for x ∈ R.

This implies

σ(R)− µ(R) ≤ inf
R

f and sup
R

f ≤ σ(R) + µ(R)

so
(sup

R
f − inf

R
f)||R|| ≤ 2µ(R)||R||.

Now sum over R. □
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Corollary 3.1. Suppose f ∈ Riemn. Then the set of discontinuities of f has
measure zero.

Proof. Since Lebn(E) = Leb
n(∪∞

ν=1Dν) ≤
∑∞

ν=1Leb
n(Dν) it will suffice to show

that Lebn(Dν) = 0 for all ν ∈ N+.
So suppose ν ∈ N+ and let ϵ > 0. Let R be as in the preceding Theorem with ϵ

there replaced by ϵ/ν. I claim that

(5)
1

ν
Leb

n(Dν ∩R) ≤ (sup
R

f − inf
R

f)||R|| whenever R ∈ R.

Suppose R ∈ R. If x ∈ Dν ∩ intR ̸= ∅ we have 1/ν ≤ oscf(x) ≤ supR f − infR;
moreover, Lebn(Dν ∩ RLebn(∗≤ Leb

n(R) = ||R||. If Dν ∩ intR is empty then
Leb

n(Dν ∩R) ≤ Leb
n(bdryR) = ||bdryR|| = 0. Thus (8) holds. It follows that

Leb
n(Dν) ≤

∑
R∈R

Leb
n(Dν ∩R) ≤ ν

∑
R∈R

(sup
R

f − inf
R

f)||R|| < ϵ.

Owing to the arbitrariness of ϵ we conclude that Lebn(Dν) = 0. □
Lemma 3.2. Suppose f ∈ Bn and the set of discontinuities of f has measure zero.
Then f ∈ Riemn.

Proof. Suppose ϵ > 0. Choose η > 0 and ν ∈ N+ such that ||S||/ν+Mη < ϵ. Let Z
be a countable family of open rectangles such that Dν ⊂ ∪Z and

∑
r∈Z ||R|| < η.

Since Dν is compact there is a finite subfamily F of Z such that Dν ⊂ ∪F . Let
δ > 0 be such that δ is less than the Lebesgue number of the covering{

U : is an open subset of Rn and (supU f − infU f) < 1
ν

}
.

of the of the compact set K = S ∼ ∪F . Let R be a finite disjointed family of
rectangles with union K none of whose diameters exceed δ; let

s =
∑
S∈R

inf
R

f1R and let m =
∑
R∈R

(sup
R

f − inf
R

f)1R +M
∑
R∈F

1R.

Then

|f − s| ≤ m and I+n (m) ≤ 1

ν
||S||+Mη < ϵ.

□

Definition 3.2. We say a subset A of Rn has Jordan content if 1A ∈ Riemn in
which case we let R(1A) be the Jordan content of A. In view of the preceding
Theorem, A will have Jordan content if and only if A is bounded and its boundary
has measure zero. Since the boundary of such a set is compact we find that A has
Jordan content if and only if A is bounded and for every ϵ > 0 there is a finite
family R of open rectangles such that

∑
R∈R ||R|| ≤ ϵ. Since R is linear Jordan

content is additive and if A,B have Jordan content then so do A ∪ B, A ∩ B and
A ∼ B.


