1. Alternating and symmetric multilinear functions.

Suppose V is a vector space.

Definition 1.1. For each vector space Z and each $p \in \mathbb{Z}$ we set

$$\bigotimes^{p}(V,Z) = \begin{cases} \{0\} & \text{if } p < 0, \\ Z & \text{if } p = 0; \\ \mathbb{Lin}(V,Z) & \text{if } p = 1, \\ \mathbb{MultiLin}(V^{p},Z) & \text{if } p \ge 1. \end{cases}$$

If $\mu \in \bigotimes^{p} (V, Z)$ then μ is symmetric if $p \leq 1$ or p > 1 and

$$\mu(v \circ \sigma) = \mu(v)$$
 whenever σ is a transposition of $\llbracket 1, p \rrbracket$

and μ is **alternating** or **antisymmetric** if $p \leq 1$ or p > 1 and

 $\mu(v \circ \sigma) = -\mu(v)$ whenever σ is a transposition of $[\![1, p]\!]$.

We let

$$\bigcirc^{p}(V,Z) = \{\mu \in \mathbb{M}ulti\mathbb{L}in(V^{p},Z) : \mu \text{ is symmetric}\}\$$

and we let

$$\bigwedge^{p}(V,Z) = \{ \mu \in \mathbb{MultiLin}(V^{p},Z) : \mu \text{ is alternating} \}.$$

Evidently, $\bigwedge^{p}(V, Z)$ and $\bigcirc^{p}(V, Z)$ are linear subspaces of $\bigotimes^{p}(V, Z)$.

If U is a vector space and $l \in Lim(U, V)$ we define the linear map

$$\bigotimes^{p}(l,Z):\bigotimes^{p}(V,Z)\to\bigotimes^{p}(U,Z)$$

by setting

$$\bigotimes^{p} (l, Z)(\varphi)(u) = \varphi(v)$$

for $\varphi \in \bigotimes^{p} (V, Z)$, $u \in U^{p}$ and where $v \in V^{p}$ is such that $v_{i} = l(u_{i})$ for $i \in [\![1, p]\!]$. This extends the notion of adjoint encountered previously. We note that $\bigotimes^{p} (l, Z)$ preserves symmetry and antisymmetry and we set

$$\bigcirc^{p}(l,Z) = \bigotimes^{p}(l,Z) | \bigcirc^{p}(V,Z) \text{ and } \bigwedge^{p}(l,Z) = \bigotimes^{p}(l,Z) | \bigwedge^{p}(V,Z).$$

One easily verifies that if W is a vector space and $m \in Lin(V, W)$ then

$$\bigotimes^{p} (m \circ l, Z) = \bigotimes^{p} (l, Z) \circ \bigotimes^{p} (m, Z)$$

and that similar formulae hold with $\bigotimes^{p}(\cdot, Z)$ replaced by $\bigcirc^{p}(\cdot, Z)$ and $\bigwedge^{p}(\cdot, Z)$.

1.1. **Bases.** Suppose E is a basis for V and $p \in \mathbb{N}^+$. For each $e \in E^p$ we let

$$e^* \in \bigotimes^p V$$

be such that

$$e^*(v) = \prod_{i=1}^p e^*_i(v_i) \quad \text{for } v \in V^p.$$

Interior multiplication. For each $p \in \mathbb{Z}$ we define the bilinear map

$$\bigotimes^{p}(V,Z) \times V \xrightarrow{\perp}_{1} \bigotimes^{p-1}(V,Z)$$

as follows: Given $\varphi \in \bigotimes^p (V, Z)$ and $v \in V$ we set $\varphi \sqcup v = 0$ in case $p \leq 0$, we set $\varphi \sqcup v = \varphi(v)$ in case p = 1 and, in case p > 1, we set

$$(\varphi \llcorner v)(w) = \varphi(\overline{vw}) \text{ for } w \in V^{p-1}.$$

We call $\varphi \sqcup v$ interior multiplication or contraction of φ by v. Note that interior multiplication by v preserves the subspaces of symmetric and alternating multilinear functions. For each $v \in V$ we define

$$\iota_v \in \operatorname{Lin}(\bigotimes^p(V,Z),\bigotimes^{p-1}(V,Z))$$

by letting $\iota_v(\varphi) = \varphi \, \sqcup \, v$ for $\varphi \in \bigotimes^p V$.

Definition 1.2. For each integer p we let

$$\bigotimes^{p} V = \bigotimes^{p} (V, \mathbf{R}), \quad \bigodot^{p} V = \bigcirc^{p} (V, \mathbf{R}), \quad \bigwedge^{p} V = \bigwedge^{p} (V, \mathbf{R})$$

and we let

$$\bigotimes^{p} l = \bigotimes^{p} (l, \mathbf{R}), \quad \bigodot^{p} l = \bigcirc^{p} (l, \mathbf{R}), \quad \bigwedge^{p} l = \bigwedge^{p} (l, \mathbf{R}).$$

Theorem 1.1 (The Contravariant Exterior Product.). There is one and only one map

$$\bigwedge^{p} V \times \bigwedge^{q} V \xrightarrow{\wedge} \bigwedge^{p+q} V$$

such that, if $\varphi \in \bigwedge^p V$ and $\psi \in \bigwedge^q V$ then

(CE1) $\varphi \wedge \psi = \varphi \psi$ if p = 0 and q = 0;

(CE2) $(\varphi \land \psi) \sqcup v = (\varphi \sqcup v) \land \psi + (-1)^p \varphi \land (\psi \sqcup v)$ for all v in V.

This mapping is bilinear.

Remark 1.1. Because (CE2) holds we say $\varphi \mapsto \varphi \sqcup v$ is a skewderivation.

Proof. The statement holds trivially if p < 0 or q < 0 so suppose $p \ge 0$ and $q \ge 0$ and induct on r = p + q. It is evident by induction on r that there is unique map

$$\bigwedge^{p} V \times \bigwedge^{q} V \xrightarrow{\wedge} \bigotimes^{p+q} V$$

such that (CE1) and (CE2) are satisfied and that this map is bilinear. We need to show that if $\varphi \in \bigwedge^p V$ and $\psi \in \bigwedge^q V$ then $\varphi \wedge \psi$ is alternating. This is trivially the case if r = 0 so assume r > 0 and that the Theorem holds for smaller r.

Since

$$(\varphi \land \psi) \llcorner v = (\varphi \llcorner v) \land \psi + (-1)^p \varphi \land (\psi \llcorner v)$$

for any $v \in V$ the inductive hypothesis implies that $\varphi \wedge \psi$ is alternating in its last r-1 arguments. To complete the proof it will suffice to show that it is alternating in its first two arguments. That is, given $v, w \in V$ we need to show that $((\varphi \wedge \psi) \sqcup v) \sqcup w$ is alternating in v, w. But

$$\iota_w(\iota_v((\varphi \land \psi)) = \iota_w(\iota_v(\varphi) \land \psi + (-1)^p \varphi \land \iota_v(\psi)) = A + B + C + D$$

where

$$A = \iota_w(\iota_v(\varphi)) \land \psi \quad \text{and} \quad B = (-1)^{p-1} \iota_v(\varphi) \land \iota_w(\psi)$$
$$C = (-1)^p \iota_w(\varphi) \land \iota_v(\psi) \quad \text{and} \quad D = (-1)^p (-1)^p \varphi \land \iota_w(\iota_v(\psi))$$

A is alternating in v and w because φ is alternating; B + C is clearly alternating in v and w; and D is alternating in v and w because ψ is alternating.

$$((\varphi \land \psi) \llcorner v) \llcorner w = ((\varphi \llcorner v) \land \psi + (-1)^p \varphi \land (\psi \llcorner v)) \llcorner w$$

= $((\varphi \llcorner v) \llcorner w) \land \psi + (-1)^{p-1} (\varphi \llcorner v) \land (\psi \llcorner w)$
+ $(-1)^p (\varphi \llcorner w) \land (\psi \llcorner v) + (-1)^p (-1)^p \varphi \land ((\psi \llcorner v) \llcorner w).$

The sum of the second and third terms in this sum is clearly alternating in v and w and the first and fourth terms are alternating in v and w because φ and ψ are alternating.

Theorem 1.2. Suppose $\varphi \in \bigwedge^p V$, $\psi \in \bigwedge^q V$ and $\zeta \in \bigwedge^r V$. Then $(\varphi \wedge \psi) \wedge \zeta = \varphi \wedge (\psi \wedge \zeta).$

(That is, exterior multiplication is associative.)

Proof. The Theorem holds trivially if any of p, q, r are negative. So we assume that p, q, r are nonnegative and induct on s = p + q + r. The Theorem holds trivially if s = 0 so suppose s > 0 and that Theorem holds for smaller s. Given $v \in V$ we calculate

$$\begin{split} \left((\varphi \land \psi) \land \zeta \right) \llcorner v &= \left((\varphi \land \psi) \llcorner v \right) \land \zeta + (-1)^{p+q} (\varphi \land \psi) \land (\zeta \llcorner v) \\ &= \left((\varphi \llcorner v) \land \psi \right) \land \zeta + (-1)^p \left(\varphi \land (\psi \llcorner v) \right) \land \zeta \\ &+ (-1)^{p+q} (\varphi \land \psi) \land (\zeta \llcorner v); \end{split}$$

$$\begin{split} \left(\varphi \wedge (\psi \wedge \zeta)\right) \, \llcorner \, v &= (\varphi \, \llcorner \, v) \wedge (\psi \wedge \zeta) + (-1)^p \varphi \wedge \left((\psi \wedge \zeta) \, \llcorner \, v\right) \\ &= (\varphi \, \llcorner \, v) \wedge (\psi \wedge \zeta) \\ &+ (-1)^p \varphi \wedge \left((\psi \, \llcorner \, v) \wedge \zeta\right) + (-1)^p (-1)^q \varphi \wedge \left(\psi \wedge (\zeta \, \llcorner \, v)\right). \end{split}$$

Now apply the inductive hypothesis. \Box

Theorem 1.3. Suppose $\varphi \in \bigwedge^p V$ and $\psi \in \bigwedge^q V$. Then $\varphi \wedge \psi = (-1)^{pq} \psi \wedge \varphi$.

(That is, exterior multiplication is **anticommutative** in the graded sense.)

Proof. The Theorem holds trivially if either p or 1 is negative. Induct on r = p + q. If r = 0 this amounts to the commutative law for multiplication of real numbers so suppose r > 0 and that the Theorem holds for smaller r. For any v in V we have

$$(\varphi \land \psi) \sqcup v = (\varphi \sqcup v) \land \psi + (-1)^p \varphi \land (\psi \sqcup v);$$

$$(-1)^{pq}(\psi \wedge \varphi) \sqcup v = (-1)^{pq}(\psi \sqcup v) \wedge \varphi + (-1)^{pq}(-1)^q \psi \wedge (\varphi \sqcup v).$$

Now apply the inductive hypothesis.

Corollary 1.1. Suppose p is odd and $\varphi \in \bigwedge^p V$. Then $\varphi \wedge \varphi = 0$.

1.2. \wedge^p . For $p \in \mathbb{N}^+$ and $\omega \in (V^*)^p$ we define

$$\wedge^p(\omega) \in \bigwedge^p V$$

by setting $\wedge^1(\omega) = \omega_1$ and requiring that, if p > 1,

$$\wedge^{p}(\omega) = \omega_{1} \wedge \wedge^{p-1}(\omega | \llbracket 1, p-1 \rrbracket)$$

$$a^{*}(b) = \begin{cases} 1 & \text{if } b = a, \\ 0 & \text{if } b \in E \sim \{a\}. \end{cases}$$

Suppose \prec is a well ordering of E. For each $p \in \mathbb{N}$ and each $A \in \Lambda(E, p)$ we let

$$\mathbf{e}_A \in E^p$$

be such that $\operatorname{\mathbf{rng}} \mathbf{e}_A = A$ and \mathbf{e}_A increasing with respect to \prec ; we let

$$\mathbf{e}_A^* \in \{e^* : e \in E\}^p$$

be such that the *i*-th coordinate of \mathbf{e}_A^* equals $(\mathbf{e}_A(i))^*$; and we let

$$\mathbf{e}^A = \wedge^p(\mathbf{e}^*_A) \in \bigwedge^p V$$

Proposition 1.1. The following statements hold:

(i) if A is a finite subset of E and $b \in E \sim A$ then

$$\mathbf{e}^A \sqcup b = 0;$$

(ii) if A and B are finite subsets of E and $a\prec b$ whenever $a\in A$ and $b\in B$ then

$$\mathbf{e}^{A\cup B} = \mathbf{e}^A \wedge \mathbf{e}^B;$$

(iii) If A is a finite subset of E, $a \in A$, $B = \{x \in A : x \prec a\}$ and $C = \{x \in A : a \prec x\}$ then

$$\mathbf{e}^A \, \bot \, a = (-1)^{|B|} \mathbf{e}^{B \cup C};$$

(iv) if A and B are nonempty finite subsets of E then

$$\mathbf{e}^{A}(\mathbf{e}_{B}) = \begin{cases} 1 & \text{if } A = B, \\ 0 & \text{if } A \neq B. \end{cases}$$

(iv) if $A \in \Lambda(E, p)$ and $e \in E^p$. Then

$$\mathbf{e}^A(e) = 0$$
 if $\mathbf{rng} \, e \neq A$

and, if
$$\operatorname{\mathbf{rng}} e = A$$
 and $\sigma = \mathbf{e}_A^{-1} \circ e$, then $\sigma \in \Sigma(p)$ and

$$\mathbf{e}^{A}(e) = \mathbf{sgn}(\sigma).$$

Proof. If A is empty (i)-(iv) hold trivially. So suppose $A \neq \emptyset$. We prove (i)-(iii) by induction on |A|.

If $b \in E \sim A$ then, letting a be the $\prec\text{-first}$ member of A and arguing inductively, we have

 $\mathbf{e}^{A} \sqcup b = (a^* \land \mathbf{e}^{A \sim \{a\}}) \sqcup b = a^*(b) \land \mathbf{e}^{A \sim \{a\}} - a^* \land ((\mathbf{e}^{A \sim \{a\}}) \sqcup b = 0 + 0 = 0$ so (i) holds.

If A and B are as in (ii) then letting a be the \prec first member of A and arguing inductively we find that

$$\mathbf{e}^{A \cup B} = a^* \wedge \mathbf{e}^{(A \sim \{a\}) \cup B}$$
$$= a^* \wedge (\mathbf{e}^{A \sim \{a\}} \wedge \mathbf{e}^B)$$
$$= (a^* \wedge \mathbf{e}^{A \sim \{a\}}) \wedge \mathbf{e}^B$$
$$= \mathbf{e}^A \wedge \mathbf{e}^B$$

so (ii) holds.

If A, a and B, C are as in (iii) we use (ii) and (i) and argue inductively to obtain

$$\mathbf{e}^{A} \sqcup a = (\mathbf{e}^{B} \land a^{*} \land \mathbf{e}^{C}) \sqcup a$$

= $(\mathbf{e}^{B} \sqcup a) \land a^{*} \land \mathbf{e}^{C} + (-1)^{|B|} \mathbf{e}^{B} \land (a^{*} \sqcup a) \land \mathbf{e}^{C}$
+ $(-1)^{|B|+1} \mathbf{e}^{B} \land a^{*} \land (\mathbf{e}^{C} \sqcup a)$
= $(-1)^{|B|} \mathbf{e}^{B} \land \mathbf{e}^{C}$
= $(-1)^{|B|} \mathbf{e}^{B \cup C}$

so (iii) holds.

Suppose A is a nonempty finite subsets of E and $e \in V^{|A|}$. If $i \in [\![1, |A|]\!]$ and $e_i \notin A$ we let τ transpose 1 and i and let $f \in E^{|A|-1}$ be such that $e \circ \tau = \overline{e_i f}$. Then

$$\mathbf{e}^{A}(e) = -\mathbf{e}^{A}(e \circ \tau) = \mathbf{e}^{A}(\overline{e_{i} f}) = (\mathbf{e}^{A} \sqcup e_{i})(f) = 0$$

by (i). If $\operatorname{\mathbf{rng}} e = \operatorname{\mathbf{rng}} A$ it evident that $\sigma = \mathbf{e}_A^{-1} \circ e \in \Sigma(|A|)$ so

$$\mathbf{e}_A(e) = \mathbf{e}_A(\mathbf{e}_A \circ \sigma) = \mathbf{sgn}(\sigma)\mathbf{e}^A(\mathbf{e}_A) = 1$$

since, letting $B = A \sim \{a\}$ and arguing inductively using (i),

$$\mathbf{e}_A(\mathbf{e}_A) = (a^* \wedge \mathbf{e}^B)(\overline{a \, \mathbf{e}_{A \sim \{A\}}}) = \left(a^*(a)\mathbf{e}^B - a^* \wedge ((\mathbf{e}^B) \sqcup a)\right)(\mathbf{e}_B = 1 + 0 = 1.$$

Theorem 1.4. Suppose $\phi, \psi \in \bigwedge^p V$ and

$$\phi(\mathbf{e}_A) = \psi(\mathbf{e}_A) \text{ for all } A \in \Lambda(E, p).$$

Then $\phi = \psi$.

Proof. Suppose $e \in \Lambda(E, p)$ Let $A = \operatorname{\mathbf{rng}} E$ and let $\sigma \in \Sigma(p)$ be such that $e = \mathbf{e}_A \circ \sigma$. Then

$$\phi(e) = \mathbf{sgn}(\sigma)\phi(\mathbf{e}_A) = \mathbf{sgn}(\sigma)\psi(\mathbf{e}_A) = \psi(e).$$

It follows from ?? that $\phi = \psi$.

Corollary 1.2. Suppose $\phi \in \bigwedge^p V$. Then

$$\{v \in E^p : \phi(v) \neq 0\}$$
 is finite

and

(1)
$$\phi(v) = \sum_{A \in \Lambda(E,p)} \mathbf{e}^A(v)\phi(\mathbf{e}_A).$$

Proof. The first assertion of the corollary follows from ?? and that implies that the right hand sice of (1) defines a member of $\bigwedge^p(V, Z)$. That both sides of (1) have the same value on \mathbf{e}_B for any $B \in \Lambda(E, p)$ follows from ??.

Theorem 1.5. Suppose $\omega \in (V^*)^p$. Then

(2)
$$\wedge^{p}(\omega)(v) = \sum_{\sigma \in \Sigma(p)} \operatorname{sgn}(\sigma) \Pi_{i=1}^{p} \omega_{i}(v_{\sigma(i)}) \text{ for any } v \in V^{p}.$$

Proof. For each $v \in V^p$ let $\psi(v)$ be the right hand side of (2). So $\psi \in \bigotimes^p (V, Z)$, For $\rho \in \Sigma(p)$ and $v \in V^p$ we have

$$\begin{split} \psi(v \circ \rho) &= \sum_{\sigma \in \Sigma(p)} \mathbf{sgn}(\sigma) \Pi_{i=1}^{p} \omega_{i}((v \circ \rho)_{\sigma(i)}) \\ &= \sum_{\sigma \in \Sigma(p)} \mathbf{sgn}(\sigma \circ \rho^{-1}) \Pi_{i=1}^{p} \omega_{i}(v \circ_{\sigma(i)}) \\ &= \mathbf{sgn}(\rho) \sum_{\sigma \in \Sigma(p)} \mathbf{sgn}(\sigma) \Pi_{i=1}^{p} \omega_{i}(v \circ_{\sigma(i)}) \\ &= \mathbf{sgn}(\rho) \psi(v). \end{split}$$

Thus $\psi \in \bigwedge^p(V, Z)$. Since ?? implies that both sides of (2) have the same value on \mathbf{e}_A for any $A \in \Lambda(E, p)$ we infer from ?? that (2) holds.

Corollary 1.3. Suppose $n = \dim V < \infty$. Then

(3)
$$\phi = \phi(\mathbf{e}_E)\mathbf{e}^E \quad \text{for } \phi \in \bigwedge^n V.$$

Moreover, $\mathbf{e}^{E}(\mathbf{e}_{E}) = 1$ and $\{\mathbf{e}^{E}\}$ is basis for **dim** $\bigwedge^{n} V$. In particular, **dim** $\bigwedge^{n} V = 1$.

Proof. (3) holds since $\{A : A \subset E \text{ and } |A| = n\} = E$ by ?? which also implies that $\operatorname{span} \mathbf{e}_E = \bigwedge^n V$. That $\mathbf{e}^E(\mathbf{e}_E) = 1$ follows from Proposition ?? and this implies $\{\mathbf{e}^E\}$ is a basis for $\bigwedge^n V$.

Proposition 1.2. For $\phi, \psi \in \bigwedge^n V$ with $\psi \neq 0$ there is unique

$$\frac{\phi}{\psi} \in \mathbb{R}$$

such that

$$\frac{\phi}{\psi} = \frac{\phi(v)}{\psi(v)}$$
 whenever $v \in V^n$ and span rng $v = V$.

Moreover,

$$\phi = \frac{\phi}{\psi}\psi.$$

Proof. This is a straightforward consequence of the foregoing.

Proposition 1.3. Suppose $L \in \mathbb{E}nd(V)$. There is a unique $r \in \mathbb{R}$ such that

(4)
$$\left(\bigwedge^{n} L\right)(\phi) = r\xi \quad \text{for } \phi \in V^{n}.$$

Proof. This holds since $\bigwedge^n L \in \mathbb{E}$ nd $(\bigwedge^n V)$ and dim $\bigwedge^n V = 1$.

Definition 1.3. For $L \in \mathbb{E}nd(V)$ we let

$$\det L = r$$

where r is as in (4).

Theorem 1.6. Suppose $L, M \in \mathbb{E}nd(V)$. Then

$$\det (L \circ M) = (\det L)(\det M).$$

Proof. If $\phi \in \bigwedge^n V$ then

$$\det (L \circ M)\phi = \left(\bigwedge^{n} (L \circ M)\right)(\phi)$$
$$= \left(\bigwedge^{n} M\right) \left(\left(\bigwedge^{n} L\right)(\phi)\right)$$
$$= \left(\bigwedge^{n} M\right) \left((\det L)\phi\right)$$
$$= (\det L) \left(\left(\bigwedge^{n} M\right)(\phi)\right)$$
$$= (\det L)(\det M)\phi.$$

7

1.3. The signature of a permutation revisited. Suppose $n \in \mathbb{N}^+$. Let \mathbf{e}_i , $i \in [\![1, n]\!]$, be the standard basis vectors for \mathbb{R}^n . For $\rho \in \Sigma([\![1, n]\!])$ let $L_\rho \in \mathrm{GL}(\mathbb{R}^n)$ be such that

$$L_{\rho}(\mathbf{e}_i) = \mathbf{e}_{\rho(i)} \quad \text{for } i \in \llbracket 1, n \rrbracket.$$

A simple calculation shows that

$$L_{\rho} \circ L_{\sigma} = L_{\rho \circ \sigma} \quad \text{for } \sigma, \rho \in \Sigma(\llbracket 1, n \rrbracket).$$

It follows from ?? that

$$\Sigma(\llbracket 1, n \rrbracket) \ni \sigma \mapsto \det L_{\sigma} \in \{-1, 1\}$$

is a homomorphism. Since

 $\det \sigma = -1$ if σ is a transposition of $[\![1, n]\!]$

we find that

$$\operatorname{sgn}(\sigma) = \operatorname{det} L_{\sigma} \quad \text{for } \sigma \in \Sigma(\llbracket 1, n \rrbracket).$$

Corollary 1.4. Suppose A and B are finite subsets of E, |A| = |B| and σ is a permutation of [1, |A|]. Then

$$\mathbf{e}^{B}(\mathbf{e}_{A} \circ \sigma) = \begin{cases} \mathbf{sgn}(\sigma) & \text{if } B = A, \\ 0 & \text{if } B \neq A. \end{cases}$$

2. The shuffle formula.

Suppose $m, N \in \mathbb{N}^+$. We let

$$\mathcal{I}(m,N)$$

be the set of m-tuples I of finite nonempty subsets of \mathbb{N}^+ such that

- (i) $I_i = [\min I, \max I]$ for $i \in [1, m]$;
- (ii) $\min I_1 = 1;$
- (iii) $\min I_{i+1} = \max I_i + 1 \text{ for } i \in [1, m];$

(iv)
$$N = \sum_{i=1}^{m} |I_i|$$
.
If $I \in \mathcal{I}(m, N)$ we let

 $\mathbf{Sh}(I)$

be the set of permutations σ of $[\![1, N]\!]$ such that $\sigma|I_i$ is increasing for $i \in [\![1, m]\!]$; such a σ is called a **shuffle of type** I. Evidently,

(5)
$$\mathbf{rev}(\sigma) = \bigcup_{i=1}^{m} \bigcup_{j=i+1}^{m} \{(k,l) \in I_i \times I_j : \sigma(i) > \sigma(j)\}$$

Suppose $m \in \mathbb{N}^+$, p is an m-tuple of positive integers. Let $P_0 = 0$ and, for $i \in [\![1,m]\!]$, let $P_i = \sum_{j=1}^i p_i$. For $i \in [\![1,m]\!]$ we let $I_i = [\![P_{i-1}+1,P_i]\!]$; Thus $I \in \mathcal{I}(m)$.

Theorem 2.1. Suppose ϕ is an *m*-tuple such that $\phi_i \in \bigwedge^{p_i} V$ for $i \in [\![1,m]\!]$ and $v \in V^{P_m}$. Then

(6)
$$\left(\bigwedge_{i=1}^{m}\phi_{i}\right)(v)=\sum_{\sigma\in\mathbf{Sh}(I)}\mathbf{sgn}(\sigma)\Pi_{i=1}^{m}\phi_{i}(v\circ(\sigma|I_{i})).$$

Proof. We prove this by induction on m. (6) holds trivially if m = 1. Suppose $w \in V^{P_m-1}$ is such that $v = \overline{v_1 w}$.

2.1. The case m = 2. Let

$$\Omega = (\phi_1 \land \phi_2)(v); \quad \Omega_1 = ((\phi_1 \sqcup v_1) \land \phi_2)(w); \quad \Omega_2 = (-1)^{p_1}(\phi_1 \land (\phi_2 \sqcup v_1))(w);$$

Thus

$$\Omega = \Omega_1 + \Omega_2.$$

Lemma 2.1. We have

(7)
$$\Omega_1 = \sum_{\sigma \in \mathbf{Sh}(I), \ \sigma(1)=1} \mathbf{sgn}(\sigma) \phi_1(v \circ (\sigma | I_1)) \phi_2(v \circ (\sigma | I_2)).$$

Proof. Induct on p_1 . If $p_1 = 1$ then $\Omega_1 = \phi_1(v_1)\phi_2(w)$ so (7) holds.

Suppose $p_1 > 1$. Let $J_1 = [\![1, p_1 - 1]\!]$ and let $J_2 = [\![p_1, p_1 + p_2 - 1]\!]$. Arguing inductively we find that

$$\Omega_{1} = \sum_{\rho \in \mathbf{Sh}(J)} \mathbf{sgn}(\rho)(\phi_{1} \sqcup v_{1})(w \circ (\rho|J_{1}))\phi_{2}((w \circ (\rho|J_{2})))$$
$$= \sum_{\sigma \in \mathbf{Sh}(I), \sigma(1)=1} \mathbf{sgn}(\sigma)\phi_{1}(v \circ (\sigma|I_{1}))\phi_{2}((w \circ (\sigma|I_{2})).$$

Lemma 2.2. We have

(8)
$$\Omega_2 = \sum_{\sigma \in \mathbf{Sh}(I), \ \sigma(1) = p_1 + 1} \mathbf{sgn}(\sigma) \phi_1(v \circ (\sigma | I_1)) \phi_2(v \circ (\sigma | I_2)).$$

Proof. Induct on p_2 . If $p_2 = 1$ then $\Omega_2 = (-1)^{p_1} \phi_1(w) \phi_2(v_1)$ so (8) holds.

Suppose $p_2 > 1$. Let $J_1 = [\![1, p_1]\!]$ and let $J_2 = (\!(p_1, p_1 + p_2 - 1]\!]$. Arguing inductively we find that

$$\Omega_{2} = (-1)^{p_{1}} \sum_{\rho \in \mathbf{Sh}(J)} \mathbf{sgn}(\rho) \phi_{1}(w \circ (\rho|J_{1}))(\phi_{2} \sqcup v_{1})((w \circ (\rho|J_{2})))$$
$$= \sum_{\sigma \in \mathbf{Sh}(I), \sigma(1) = p_{1}+1} \mathbf{sgn}(\sigma) \phi_{1}(v \circ (\sigma|I_{1})) \phi_{2}((v \circ (\sigma|I_{2})).$$

$$I \in \mathcal{I}(m, N)$$

$$J \in \mathcal{I}(2, N) \quad J_1 = \bigcup_{i=1}^m I_i \quad J_2 = I_{m+1}$$
$$K \in \mathcal{I}(m, N - |I_{m+1}|) \quad K_i = I_i \quad \text{for } i \in \llbracket 1, m \rrbracket$$

$$\mathbf{g}: \mathbf{Sh}(J) \times \mathbf{Sh}(K) \to \mathbf{Sh}(I)$$

$$\mathbf{g}(\alpha,\beta) = (\alpha \circ \beta) \cup (\alpha | I_{m+1})$$

Lemma 2.3. $\operatorname{rng} g = \operatorname{Sh}(I)$ and

(9)
$$\operatorname{sgn}(\mathbf{g}(\alpha,\beta) = \operatorname{sgn}(\alpha)\operatorname{sgn}(\beta) \text{ for } \alpha,\beta \in \operatorname{Sh}(J) \times \operatorname{Sh}(K).$$

Moreover,

$$\mathbf{g}(\alpha,\beta)|I_i = (\alpha|J_1) \circ (\beta|K_1) \quad \text{for each } i \in \llbracket 1,m \rrbracket \text{ and } \quad \mathbf{g}(\alpha,\beta)|I_{m+1} = \alpha|J_2.$$

Proof. Let $\gamma = \mathbf{g}(\alpha, \beta) \in \mathbf{Sh}(I)$. Since $\gamma | I_i$ is increasing for each $i \in [\![1, m+1]\!]$ and since $\mathbf{rng} \gamma \subset [\![1, m+1]\!]$ we find that $\gamma \in \mathbf{Sh}(I)$.

Suppose $i, j \in \llbracket 1, m+1 \rrbracket$ and i < j. If $j \le m$ we find that

$$\{(k,l) \in I_i \times I_j : \gamma(k) > \gamma(l)\} = \{(k,l) \in I_i \times I_l : \beta(k) > \beta(l)\}$$

and

$$\{(k,l)\in I_i\times I_j:\alpha(k)>\alpha(l)\}=\emptyset$$

since α is increasing on J_1 . Also,

$$\{(k,l) \in I_i \times I_{m+1} : \gamma(k) > \gamma(l)\} = \{(k,l) \in I_i \times I_{m+1} : \alpha(\beta(k)) > \alpha(l)\}$$

so, as β permutes J_1 ,

$$\bigcup_{i=1}^{m} \{ (k,l) \in I_i \times I_{m+1} : \gamma(k) > \gamma(l) \} = \bigcup_{i=1}^{m} \{ (k,l) \in I_i \times I_{m+1} : \alpha(k) > \alpha(l) \}.$$

Thus $\mathbf{rev}(\gamma)$ is the disjoint union of $\mathbf{rev}(\alpha)$ and $\mathbf{rev}(\beta)$ so (9) holds.

$$\begin{pmatrix} \bigwedge_{i=1}^{m+1} \phi_i \end{pmatrix} (v) = (\Phi \land \phi_{m+1})(v)$$

= $\sum_{\alpha \in \mathbf{Sh}(J)} \mathbf{sgn}(\alpha) \Phi(v \circ (\alpha|J_1)) \phi_{m+1}(v \circ (\alpha|J_2))$
= $\sum_{\alpha \in \mathbf{Sh}(J)} \mathbf{sgn}(\alpha) \left(\sum_{\beta \in \mathbf{Sh}(K)} \mathbf{sgn}(\beta) \prod_{i=1}^m \phi_i(v \circ (\alpha|J_1) \circ (\beta|K_i))) \right) \phi_{m+1}(v \circ (\alpha|J_2))$
=

3. Symmetric algebra.

For each $m\in\mathbb{N}$

$$\Xi(E,m)$$

be the set of $\alpha: E \to \mathbb{N}$ such that

$$||\alpha|| = \sum_{a \in E} \alpha(a) = m.$$

Proposition 3.1. Suppose E is finite. Then

$$|\Xi(E,m)| = \binom{m+|E|-1}{|E|-1}.$$

Proof. Suppose $\lambda \in \Lambda(|E| - 1 + m, |E| - 1)$. Let $\mathbf{A}(\lambda) \in \Xi(m + |E| - 1, |E| - 1)$ be such that

$$\mathbf{A}(\lambda)(i) = \begin{cases} \lambda(1) - 1 & \text{if } i = 1, \\ \lambda(i) - \lambda(i - 1) - 1 & \text{if } i \in ((1, |E| - 1]), \end{cases}$$

Suppose $\alpha \in \Xi(|E|, m)$. Let $\mathbf{L}(\alpha) \in \Lambda(|E| - 1 + m, |E| - 1)$ be such that

$$\mathbf{L}(\alpha)(i) = i + \sum_{j=1}^{i} \alpha(j) \text{ for } i \in [[1, |E| - 1]].$$

Now observe that ${\bf A}$ and ${\bf L}$ are inverse to one another.

$$\mathbf{A}(\mathbf{L}(\alpha))(1) = \mathbf{L}(\alpha)(1) - 1 = 1 + \left(\sum_{j=1}^{1} \alpha(j)\right) - 1 = \alpha(1);$$

If i > 1 then

$$\mathbf{A}(\mathbf{L}(\alpha))(i) = \mathbf{L}(\alpha)(i) - \mathbf{L}(\alpha)(i-1) - 1 = i + \sum_{j=1}^{i} \alpha(j) - \left(i - 1 + \sum_{j=1}^{i-1} \alpha(j)\right) - 1 = \alpha(i);$$

$$\mathbf{L}(\mathbf{A}(\lambda))(i) = i + \sum_{j=1}^{i} \mathbf{A}(\lambda)(j) = i + \lambda(1) - 1 + \sum_{j=2}^{i} \lambda(j) - \lambda(j-1) - 1 = \lambda(i).$$

$$(\alpha \downarrow a)(b) = \begin{cases} \alpha(a) - 1 & \text{if } b = a, \\ \alpha(b) & \text{if } b \in E \sim \{a\}. \end{cases}$$

For $\alpha \in \Xi(E,m)$ we define

$$\mathbf{e}^{\alpha} \in \bigcirc^m V$$

by induction on m by letting

$$\mathbf{e}^{\alpha} = 1$$
 if $m = 0$

and, if m > 0, by requiring that

 $\mathbf{e}^{\alpha} = a^* \odot \mathbf{e}^{\alpha \downarrow a}$ where *a* is the \prec -first member of $\{b \in E : \alpha(b) \neq 0\}$.

If m > 0 and $\alpha \in \Xi(E, m)$ we define

$$\mathbf{e}_{\alpha} \in V^m$$

by requiring that

 $\mathbf{e}_{\alpha} = \overline{a \, \mathbf{e}_{\alpha \downarrow a}} \quad \text{where } a \text{ is the } \prec \text{-first member of } \{b \in E : \alpha(b) \neq 0\}.$

Proposition 3.2. Suppose $p, q \in \mathbb{N}$. The following statements hold:

(i) if $\alpha \in \Xi(E, p)$ and $b \in E$ then

$$\mathbf{e}^{\alpha} \sqcup b = 0$$
 if $\alpha(b) = 0$;

(ii) if $\alpha \in \Xi(E,p)$ and $\beta \in \Xi(E,q)$ then

$$\mathbf{e}^{\alpha+\beta} = \mathbf{e}^{\alpha} \odot \mathbf{e}^{\beta}.$$

(iii) If $\alpha \in \Xi(E, p), a \in E$ and $\alpha(a) \neq 0$ then

$$\mathbf{e}^{\alpha} \, \bot \, a = \mathbf{e}^{\alpha \downarrow a}$$

and, if p > 0,

$$\phi(\mathbf{e}_{\alpha}) = \phi(\overline{a \, \mathbf{e}_{\alpha \downarrow a}}) \quad \text{for } \phi \in \bigwedge^p V;$$

(iv) if p > 0 and $\alpha, \beta \in \Xi(E, p)$ then

$$\mathbf{e}^{\alpha}(\mathbf{e}_{\beta}) = \begin{cases} 1 & \text{if } \alpha = \beta, \\ 0 & \text{if } \alpha \neq \beta. \end{cases}$$

Proposition 3.3. Suppose $p \in \mathbb{N}^+$, $\phi \in \bigcirc^p(V, Z)$ and $\phi(\mathbf{e}_{\alpha}) = 0$ for all $\alpha \in \Xi(P, p)$. Then $\phi = 0$.

Proof. $(\phi \sqcup a)(\mathbf{e}_{\beta}) = 0$ for all $a \in E$ and $\beta \in \Xi(E, p-1)$ so, inducting on p, we find that

$$\phi(v) = \sum_{a \in E} a^*(v_1)(\phi \llcorner a)(w) = 0.$$

Theorem 3.1. Suppose $p \in \mathbb{N}^+$, $\phi \in \bigcirc^p(V, Z)$ and $v \in V^p$. Then

$$\phi(v) = \sum_{\alpha \in \Xi(E,p)} \mathbf{e}^{\alpha}(v)\phi(\mathbf{e}_{\alpha}).$$

Proof. Both sides have the same value on \mathbf{e}_{β} , $\beta \in \Xi(E, p)$.

Induct on p. This obviously holds if p = 1. Suppose p > 1. Let $w \in V^{p-1}$ be such that $v = \overline{v_1 w}$. Then

$$\phi(v) = (\phi \sqcup v_1)(w)$$

= $\sum_{b \in E} b^*(v_1)(\phi \sqcup b)(w)$
= $\sum_{b \in E} b^*(v_1) \sum_{\beta \in \Xi(E, p-1)} \mathbf{e}^{\beta}(w)(\phi \sqcup b)(\mathbf{e}_{\beta})$
= $\sum_{b \in E} b^*(v_1) \sum_{\beta \in \Xi(E, p-1)} \mathbf{e}^{\beta}(w)\phi(\overline{b}\,\mathbf{e}_{\beta})$

Since $\mathbf{e}^{\alpha} \sqcup b = 0$ if $\alpha \in \Xi(E, p)$ and $\alpha(b) = 0$,

$$\sum_{\alpha \in \Xi(E,p)} \mathbf{e}^{\alpha}(v)\phi(\mathbf{e}_{\alpha}) = \sum_{b \in E} b^{*}(v_{1}) \sum_{\alpha \in \Xi(E,p)} (\mathbf{e}^{\alpha} \sqcup b)(w)\phi(\mathbf{e}_{\alpha})$$
$$= \sum_{b \in E} b^{*}(v_{1}) \sum_{\alpha \in \Xi(E,p), \ \alpha(b) > 0} (\mathbf{e}^{\alpha} \sqcup b)(w)\phi(\mathbf{e}_{\alpha})$$
$$= \sum_{b \in E} b^{*}(v_{1}) \sum_{\alpha \in \Xi(E,p), \ \alpha(b) > 0} \mathbf{e}^{\alpha \downarrow b}(w)\phi(\overline{b \, \mathbf{e}_{\alpha \downarrow b}}).$$

4. The covariant exterior product.

For $p \in \mathbb{N}$ we define

$$\wedge_p \in \begin{cases} \operatorname{Lin}(\mathbb{R}, \bigwedge^0(V^*)) & \text{if } p = 0, \\ \operatorname{Lin}(V, \bigwedge^1(V^*)) & \text{if } p = 1, \\ \operatorname{MultiLin}(V^p, \bigwedge^p(V^*)) & \text{if } p = 0, \end{cases}$$

by induction on p as follows. Let $\vartheta: V \to V^{**}$ be as in ??. If p = 0 we let $\wedge_p(r) = r$ for $r \in \mathbb{R}$; if p = 1 we let $\wedge_p(v) = \vartheta(v)$ for $v \in V$; and if p > 1 we require that

$$\wedge_p(v) = \vartheta(v_1) \wedge \wedge_{p-1}(w) \quad \text{if } v \in V^p, w \in V^{p-1} \text{ and } v = \overline{v_1 w}$$

NEW

$$\wedge_p(v) = \wedge^p(\vartheta \circ v)$$
$$\wedge_p(\mathbf{e}_A)(\mathbf{e}_B^*) = \begin{cases} 1 & \text{if } A = B, \\ 0 & \text{if } A \neq B. \end{cases}$$

NEW

Definition 4.1. For $p \in \mathbb{N}$ we let

$$\bigwedge_{p} V = \operatorname{span} \{ \wedge_{p}(v) : v \in V^{p} \}.$$

Proposition 4.1. Suppose $p, q \in \mathbb{N}$, $u \in V^p$ and $v \in V^q$. Then

$$\wedge_p(u) \wedge \wedge_q(v) = \wedge_{p+q}(\overline{u\,v}) \in \bigwedge\nolimits_{p+q} V.$$

$$\wedge_{p+1}(\overline{t\,u}) \wedge \wedge_q(v) = (\vartheta(t) \wedge \wedge_p(u)) \wedge \wedge_q(v)$$

$$= \vartheta(t) \wedge (\wedge_p(u) \wedge \wedge_q(v))$$

$$= \vartheta(t) \wedge (\wedge_{p+q}(\overline{u\,v}))$$

$$= \wedge_{p+q+1}(\overline{t\,\overline{u\,v}})$$

$$= \wedge_{p+q+1}(\overline{t\,\overline{u\,v}}).$$

Theorem 4.1. Suppose $p, q, r \in \mathbb{N}$. Then

$$\begin{split} \xi \wedge \eta &= (-1)^{pq} \eta \wedge \xi \quad \text{for } \xi \in \bigwedge_p V \text{ and } \eta \in \bigwedge_q V. \\ (\xi \wedge \eta) \wedge \zeta &= \xi \wedge (\eta \wedge \zeta) \quad \text{for } \xi \in \bigwedge_p V, \, \eta \in \bigwedge_q V \text{ and } \zeta \in \bigwedge_r V. \end{split}$$

4.1. **Bases.** Suppose E is a basis for V.

Theorem 4.2. Suppose $p \in \mathbb{N}^+$. We have

$$\wedge_p(v) = \sum_{A \subset E, |A|=p} \mathbf{e}^A(v) \wedge_p (\mathbf{e}_A) \quad \text{for } v \in V^p.$$

Proof. Induct on p. Obvious if p = 1. Suppose $u \in V$ and $v \in V^p$. Arguing inductively we find that

$$\wedge_{p}(\overline{u\,v}) = \vartheta(u) \wedge \wedge(v)$$

$$\left(\sum_{a \in E} a^{*}(u)a\right) \wedge \sum_{A \subset E, |A|=p} \mathbf{e}^{A}(v)) \wedge_{p}(\mathbf{e}_{A})$$

$$= \sum_{a \in E} \sum_{A \subset E, |A|=p} a^{*}(u)\mathbf{e}^{A}(v) \vartheta(a) \wedge_{p}(\mathbf{e}_{A})$$

$$= \sum_{C \subset E, |C|=p+1} \mathbf{e}^{C}(\overline{u\,v}) \wedge_{p+1}(\mathbf{e}_{C})$$

since, by ??,

$$a^*(u)\mathbf{e}^A(v)\vartheta(a)\wedge_p(\mathbf{e}_A) = \begin{cases} be^C(\overline{u}\,\overline{v})\wedge_{p+1}(\mathbf{e}_C) & \text{if } a \notin A, \\ 0 & \text{if } a \in A. \end{cases}$$

Definition 4.2. If A is a finite subset of E we define

$$\mathbf{e}_A^* \in (V^*)^{|A|}$$

by letting $\mathbf{e}^*_{\{a\}} = a^*$ if $A = \{a\}$ for some $a \in E$ and requiring that

 $\mathbf{e}^*_A = \overline{a^* \, \mathbf{e}^*_{A \sim \{a\}}} \quad \text{if } |A| > 1 \text{ and } a \text{ is the } \prec\text{-first member of } A.$

Theorem 4.3. Suppose $p \in \mathbb{N}^+$, $A \subset E$, $B \subset E$ and |A| = p = |B|. Then

$$\wedge_p(\mathbf{e}_A)(\mathbf{e}_B^*) = \begin{cases} 1 & \text{if } A = B, \\ 0 & \text{if } A \neq B. \end{cases}$$

Proof. Straightforward induction on p.

Theorem 4.4. $\{\mathbf{e}_p(A) : A \subset E \text{ and } |A| = p\}$ is a basis for $\bigwedge_p V$.

4.1.1. The universal property of \bigwedge_* .

Definition 4.3. We define

$$\mathbf{M}_{\bigwedge_{p} V, Z} : \mathbb{Lin}\left(\mathbb{Lin}\left(\bigwedge_{p} V, Z\right), \bigwedge^{p}(V, Z)\right)$$

by letting

$$\mathbf{M}_{\bigwedge_p V, Z}(L) = L \circ \wedge_p \quad \text{for } L \in \mathbb{Lin}\left(\bigwedge_p V, Z\right).$$

We let

$$\mathbf{L}_{\bigwedge_p V, Z} = \mathbf{M}_{\bigwedge_p V, Z}^{-1}.$$

Theorem 4.5. We have

$$\mathbf{L}_{\bigwedge_{p} V, Z} \in \mathbb{Iso}\left(\mathbb{Lin}\left(\bigwedge_{p} V, Z\right), \bigwedge^{p}(V, Z)\right).$$

In particular, for any $\mu \in \bigwedge^p(V,Z)$ there is one and only one $L \in \mathbb{Lin}\left(\bigwedge_p V, Z\right)$ such that

$$\mu = L \circ \wedge_p.$$

Moreover, if Y is a vector space and $l \in \text{Lim}(Y, Z)$ then

$$l \circ \mathbf{L}_{\bigwedge_p V, Y}(\mu) = \mathbf{L}_{\bigwedge_p V, Z}(l \circ \mu)$$

for any $\mu \in \bigwedge^p (V, Y)$.

Remark 4.1. In particular,

$$\mathbf{L}_{\bigwedge_{p}V,\mathbb{R}} \in \mathbb{Iso}\left(\left(\bigwedge_{p}V\right)^{*},\bigwedge^{p}V\right).$$

Proof. The final assertion of the Theorem is an obvious consequence of the first assertion of the Theorem.

Suppose $L \in \ker \mathbf{M}_{\bigwedge_p V, Z}$. Then L vanishes on the range of \wedge_p so L vanishes on

span rng \wedge_p and thus equals 0. So ker $\mathbf{M}_{\bigwedge_p V, Z} = \{0\}$. Let E be a basis for V. Let \prec be a well ordering of E and for $A \subset E$ with |A| = p let \mathbf{e}^A and \mathbf{e}_A be as in ??. Suppose $\mu \in \bigwedge^p(V, Z)$. By ?? and ?? there is $L \in \operatorname{Lin}\left(\bigwedge_{p} V, Z\right)$ such that $L(\bigwedge_{p}(\mathbf{e}_{A}) = \mu(\mathbf{e}_{A})$ whenever $A \subset E$ and |A| = p. It follows that $\mu = \mathbf{M}_{\bigwedge_{p} V, Z}(L)$ so $\operatorname{\mathbf{rng}} \mathbf{M}_{\bigwedge_{p} V, Z} = \bigwedge^{p}(V, Z)$.

Thus
$$\mathbf{M}_{\bigwedge_{p} V, Z} \in \mathbb{Iso}\left(\mathbb{Lin}\left(\bigwedge_{p}, Z\right), \bigwedge^{p}(V, Z)\right).$$

4.2. W. Suppose W is a vector space.

Definition 4.4. Suppose $L \in \text{Lin}(V, W)$. We define

$$\bigwedge_p L \in \mathbb{Lim}\left(\bigwedge_p V, \bigwedge_p W\right)$$

by requiring that

$$\left(\bigwedge_{p} L\right)\left(\wedge_{p}(v)\right) = \wedge_{p}(w)$$

for $v \in V^p$ and where $w \in W^p$ is such that, for $i \in [1, p], w_i = L(v_i)$.

Proposition 4.2. Suppose $l \in Lin(V, W)$. The following diagram is commutative:

$$\begin{pmatrix} \bigwedge^{p} W & \stackrel{\bigwedge^{p} l}{\longrightarrow} & \bigwedge^{p} V \\ \downarrow \mathbf{L}_{p,W,\mathbb{R}} & & \downarrow \mathbf{L}_{p,V,\mathbb{R}} \\ \left(\bigwedge_{p} W\right)^{*} & \stackrel{\left(\bigwedge_{p} l\right)^{*}}{\longrightarrow} & \left(\bigwedge_{p} V\right)^{*}$$

Proof. Suppose $\phi \in \bigwedge^p W$, $v \in V^p$ and $w \in W^p$ is such that the *i*-th coordinate of $w, i \in [\![1,p]\!]$, equals $l(v_i)$. Then

$$\mathbf{L}_{p,V,\mathbb{R}}\left(\left(\bigwedge^{p}l\right)(\phi)(\wedge_{p}(v))\right) = \left(\bigwedge^{p}l\right)(\phi)(v) = \phi(w)$$

and

$$\begin{split} \left(\left(\bigwedge_{p} l \right)^{*} \left(\mathbf{L}_{p,W,\mathbb{R}}(\phi) \right) \right) \left(\wedge_{p}(v) \right) &= \left(\mathbf{L}_{p,W,\mathbb{R}}(\phi) \right) \left(\left(\bigwedge_{p} l \right) \left(\wedge_{p}(v) \right) \right) \\ &= \mathbf{L}_{p,W,\mathbb{R}}(\phi) \left(\wedge_{p}(w) \right) \\ &= \phi(w). \end{split}$$

Proposition 4.3. Suppose $l \in Lin(V, W)$. The following diagram is commutative.

$$\begin{array}{ccc} \bigwedge_{p} (W^{*}) & \stackrel{\bigwedge_{p} (l^{*})}{\longrightarrow} & \bigwedge_{p} (V^{*}) \\ \downarrow \wedge^{p} & & \downarrow \wedge^{p} \\ \bigwedge^{p} W & \stackrel{\bigwedge^{p} l}{\longrightarrow} & \bigwedge^{p} V \end{array}$$

Proof. Suppose $\omega \in (W^*)^p$ and $v \in V^p$. Let $\eta \in (V^*)^p$ is such that its *i*-th coordinate, $i \in [\![1,p]\!]$, equals $l^*(\omega_i) = \omega_i \circ l \in V^*$. Then

$$\left(\wedge^{p}\left(\left(\bigwedge_{p}(l^{*})\right)(\wedge_{p}(\omega))\right)\right)(v) = (\wedge_{p}(\eta))(v) = \wedge^{p}(\eta)(v)$$
$$\left(\left(\bigwedge^{p}l\right)(\wedge_{p}(\wedge_{p}(\omega))\right)(v) = \left(\left(\bigwedge^{p}l\right)(\wedge^{p}(\omega))\right)(v) = \wedge^{p}(\eta)(v).$$

Definition 4.5. We let

$$\mathbf{I}_p = \mathbf{L}_{p,V,\mathbb{R}} \circ \wedge^p \in \mathbb{Lim}\left(\bigwedge_p (V^*), \left(\bigwedge_p V\right)^*\right)$$

Proposition 4.4. Suppose $l \in Lim(V, W)$. The following diagram is commutative.

$$\begin{array}{ccc} \bigwedge_{p} (W^{*}) & \stackrel{\bigwedge_{p} (l^{*})}{\longrightarrow} & \bigwedge_{p} (V^{*}) \\ \downarrow \mathbf{I}_{p,W} & & \downarrow \mathbf{I}_{p,V} \\ \left(\bigwedge_{p} W\right)^{*} & \stackrel{\left(\bigwedge_{p} l\right)^{*}}{\longrightarrow} & \left(\bigwedge_{p} V\right)^{*} \end{array}$$

Proof.

$$\mathbf{I}_{p} \circ \left(\bigwedge_{p}(l^{*})\right) = \mathbf{L}_{p,V,\mathbb{R}} \circ \wedge^{p} \circ \left(\bigwedge_{p}(l^{*})\right)$$
$$= \mathbf{L}_{p,V,\mathbb{R}} \circ \left(\bigwedge^{p}l\right) \circ \wedge^{p}$$
$$= \left(\bigwedge_{p}l\right)^{*} \circ \mathbf{L}_{p,W,\mathbb{R}} \circ \wedge^{p}$$
$$= \left(\bigwedge_{p}l\right)^{*} \circ \mathbf{I}_{p}.$$

5. INNER PRODUCTS.

Suppose $\beta \in \text{Lin}(V, V^*)$ is the polarity of an inner product • on V. For each $p \in \mathbb{N}^+$ and $v \in V^p$ let

$$v^{\beta} \in (V^*)^p$$

be such that its *i*-th coordinate, $i \in [\![1, p]\!]$, equals $\beta(v_i)$.

Definition 5.1. For each $p \in \mathbb{N}^+$ let

$$\beta_p = \mathbf{I}_p \circ \left(\bigwedge_p \beta \right) \in \mathbb{I}_{SO} \left(\bigwedge_p V, \left(\bigwedge_p V \right)^* \right).$$

Theorem 5.1. β_p is the polarity of an inner product on $\bigwedge_p V$. In fact,

$$\beta_p(\wedge_p(v))(\wedge_p(w)) = \wedge^p(v^\beta)(w) \text{ for } v, w \in V^p.$$

Moreover, if $e \in V^p$ is such that the range of e is an orthonormal basis for V then

 $\{\wedge_p(\mathbf{e}_A): A \subset \llbracket 1, \dim V \rrbracket \text{ and } |A| = p\}$

is an orthonormal basis for $\bigwedge_p V$.

Theorem 5.2. Suppose p is an integer not less than 2, $u \in V$, $u \neq 0$, $v \in V^{p-1}$ and $\wedge_{p-1}(v) \neq 0$. Then

$$|\wedge_p (\overline{uv})| \le |u|| \wedge_{p-1} (v)|$$

with equality if and only if $u \in (\operatorname{span rng} v)^{\perp}$.

Proof. Let $s \in \operatorname{\mathbf{rng}} v$ and $t \in (\operatorname{\mathbf{span rng}} v)^{\perp}$ be such that u = s + t. Then

$$\wedge_{p} (\overline{uv})|^{2} = (\beta(u) \wedge^{p-1} (\beta(v)))(\overline{uv})$$

$$= (\beta(u) \wedge^{p-1} (\beta(v)))(\overline{(s+t)v})$$

$$= ((\beta(u) \wedge^{p-1} (\beta(v))) \sqcup t)(v)$$

$$= (\beta(u) \sqcup t) \wedge^{p-1} (\beta(v))(v)$$

$$= |u|^{2}| \wedge_{p-1} (v)|^{2}.$$

5.1. Adjoints. Suppose W is a finite dimensional inner product space and $l \in Lin(V, W)$. Then

$$\left(\bigwedge_{p} L\right)^{\flat} = \beta_{p,W}^{-1} \circ \left(\bigwedge_{p} L\right)^{*} \circ \beta_{p,V}.$$

Theorem 5.3.

$$(\bigwedge\nolimits_p L)^\flat = \bigwedge\nolimits_p (L^\flat).$$

Proof. Chase through the commutative diagrams.

5.2. The Hodge * operator. Suppose dim V = n. Let $\Omega \in \bigwedge_n V$ be such that $|\Omega| = 1$. (Note that the only other member of \bigwedge_V of norm 1 is $-\Omega$.) Let $\Omega^* \in \bigwedge^n V$ be such that $\Omega^*(\Omega) = 1$.

$$\gamma^p: \bigwedge^p V \to \bigwedge_p V$$

be defined by

$$\gamma^p = (\wedge_{V*}^p \circ \bigwedge_p \beta)^{-1}.$$

aldownthrought the inner product. We define

.

$$*\in \operatorname{Lin}(\bigwedge_p V,\bigwedge_{n-p} V)$$

by letting

$$*\eta = \gamma^{n-p}(\Omega^* \, \lfloor \, \eta).$$

Proposition 5.1. \cdot^* is an isometry. Moreover,

$$\xi \wedge (*\eta) = (\xi \bullet \eta)\Omega$$

and

$$* * \xi = (-1)^{p(n-p)} \xi.$$

Proof. That $\cdot *$ is an isometry can be verified by observing that

$$(*\mathbf{e}_A) \bullet \mathbf{e}_B = \begin{cases} 1 & \text{if } A = B, \\ 0 & \text{if } A \neq B \end{cases}$$

whenever A, B are subsets of E and |A| = p = |B|.

We have

$$\Omega^*(\xi \wedge (*\eta) = \Omega^*(\xi \wedge \beta_{n-p}^{-1}(\Omega^* \sqcup \beta_p)(\eta)) = (\Omega^* \sqcup \xi)(\wedge \beta_{n-p}^{-1}(\Omega^* \sqcup \beta_p)) = \xi \bullet \eta.$$