1. Alternating and symmetric multilinear functions.

Suppose V is a vector space.
Definition 1.1. For each vector space Z and each $p \in \mathbb{Z}$ we set

$$
\bigotimes^{p}(V, Z)= \begin{cases}\{0\} & \text { if } p<0 \\ Z & \text { if } p=0 \\ \mathbb{L i m}(V, Z) & \text { if } p=1 \\ \operatorname{Mundi} \mathbb{L i m}\left(V^{p}, Z\right) & \text { if } p \geq 1\end{cases}
$$

If $\mu \in \bigotimes^{p}(V, Z)$ then μ is symmetric if $p \leq 1$ or $p>1$ and

$$
\mu(v \circ \sigma)=\mu(v) \text { whenever } \sigma \text { is a transposition of } \llbracket 1, p \rrbracket
$$

and μ is alternating or antisymmetric if $p \leq 1$ or $p>1$ and

$$
\mu(v \circ \sigma)=-\mu(v) \text { whenever } \sigma \text { is a transposition of } \llbracket 1, p \rrbracket \text {. }
$$

We let

$$
\bigodot^{p}(V, Z)=\left\{\mu \in \mathbb{M u} \mathbb{M} \operatorname{ti} \mathbb{L} \operatorname{im}\left(V^{p}, Z\right): \mu \text { is symmetric }\right\}
$$

and we let

$$
\bigwedge^{p}(V, Z)=\left\{\mu \in \mathbb{M u \rrbracket d i} \mathbb{L i m}\left(V^{p}, Z\right): \mu \text { is alternating }\right\}
$$

Evidently, $\bigwedge^{p}(V, Z)$ and $\bigodot^{p}(V, Z)$ are linear subspaces of $\bigotimes^{p}(V, Z)$.
If U is a vector space and $l \in \mathbb{L i m}(U, V)$ we define the linear map

$$
\bigotimes^{p}(l, Z): \bigotimes^{p}(V, Z) \rightarrow \bigotimes^{p}(U, Z)
$$

by setting

$$
\bigotimes^{p}(l, Z)(\varphi)(u)=\varphi(v)
$$

for $\varphi \in \bigotimes^{p}(V, Z), u \in U^{p}$ and where $v \in V^{p}$ is such that $v_{i}=l\left(u_{i}\right)$ for $i \in \llbracket 1, p \rrbracket$. This extends the notion of adjoint encountered previously. We note that $\otimes^{p}(l, Z)$ preserves symmetry and antisymmetry and we set

$$
\bigodot^{p}(l, Z)=\bigotimes^{p}(l, Z) \mid \bigodot^{p}(V, Z) \quad \text { and } \quad \bigwedge^{p}(l, Z)=\bigotimes^{p}(l, Z) \mid \bigwedge^{p}(V, Z)
$$

One easily verifies that if W is a vector space and $m \in \mathbb{L i m}(V, W)$ then

$$
\bigotimes^{p}(m \circ l, Z)=\bigotimes^{p}(l, Z) \circ \bigotimes^{p}(m, Z)
$$

and that similar formulae hold with $\bigotimes^{p}(\cdot, Z)$ replaced by $\bigodot^{p}(\cdot, Z)$ and $\bigwedge^{p}(\cdot, Z)$.
1.1. Bases. Suppose E is a basis for V and $p \in \mathbb{N}^{+}$. For each $e \in E^{p}$ we let

$$
e^{*} \in \bigotimes^{p} V
$$

be such that

$$
e^{*}(v)=\Pi_{i=1}^{p} e_{i}^{*}\left(v_{i}\right) \quad \text { for } v \in V^{p} .
$$

EE

Interior multiplication. For each $p \in \mathbb{Z}$ we define the bilinear map

$$
\bigotimes^{p}(V, Z) \times V \xrightarrow{\llcorner } \bigotimes^{p-1}(V, Z)
$$

as follows: Given $\varphi \in \bigotimes^{p}(V, Z)$ and $v \in V$ we set $\varphi\llcorner v=0$ in case $p \leq 0$, we set $\varphi\llcorner v=\varphi(v)$ in case $p=1$ and, in case $p>1$, we set

$$
\left(\varphi\llcorner v)(w)=\varphi(\overline{v w}) \quad \text { for } w \in V^{p-1}\right.
$$

We call $\varphi\llcorner v$ interior multiplication or contraction of φ by v. Note that interior multiplication by v preserves the subspaces of symmetric and alternating multilinear functions. For each $v \in V$ we define

$$
\iota_{v} \in \operatorname{Lim}\left(\bigotimes^{p}(V, Z), \bigotimes^{p-1}(V, Z)\right)
$$

by letting $\iota_{v}(\varphi)=\varphi\left\llcorner v\right.$ for $\varphi \in \bigotimes^{p} V$.
Definition 1.2. For each integer p we let

$$
\bigotimes^{p} V=\bigotimes^{p}(V, \mathbf{R}), \quad \bigodot^{p} V=\bigodot^{p}(V, \mathbf{R}), \quad \bigwedge^{p} V=\bigwedge^{p}(V, \mathbf{R})
$$

and we let

$$
\bigotimes^{p} l=\bigotimes^{p}(l, \mathbf{R}), \quad \bigodot^{p} l=\bigodot^{p}(l, \mathbf{R}), \quad \bigwedge^{p} l=\bigwedge^{p}(l, \mathbf{R})
$$

AAA
Theorem 1.1 (The Contravariant Exterior Product.). There is one and only one map

$$
\bigwedge^{p} V \times \bigwedge^{q} V \xrightarrow{\wedge} \bigwedge^{p+q} V
$$

such that, if $\varphi \in \bigwedge^{p} V$ and $\psi \in \bigwedge^{q} V$ then
(CE1) $\varphi \wedge \psi=\varphi \psi$ if $p=0$ and $q=0$;
(CE2) $(\varphi \wedge \psi)\left\llcorner v=\left(\varphi\llcorner v) \wedge \psi+(-1)^{p} \varphi \wedge(\psi\llcorner v)\right.\right.$ for all v in V.
This mapping is bilinear.

Remark 1.1. Because (CE2) holds we say $\varphi \mapsto \varphi\llcorner v$ is a skewderivation.
Proof. The statement holds trivially if $p<0$ or $q<0$ so suppose $p \geq 0$ and $q \geq 0$ and induct on $r=p+q$. It is evident by induction on r that there is unique map

$$
\bigwedge^{p} V \times \bigwedge^{q} V \xrightarrow{\wedge} \bigotimes^{p+q} V
$$

such that (CE1) and (CE2) are satisfied and that this map is bilinear. We need to show that if $\varphi \in \bigwedge^{p} V$ and $\psi \in \bigwedge^{q} V$ then $\varphi \wedge \psi$ is alternating. This is trivially the case if $r=0$ so assume $r>0$ and that the Theorem holds for smaller r.

Since

$$
(\varphi \wedge \psi)\left\llcorner v=\left(\varphi\llcorner v) \wedge \psi+(-1)^{p} \varphi \wedge(\psi\llcorner v)\right.\right.
$$

for any $v \in V$ the inductive hypothesis implies that $\varphi \wedge \psi$ is alternating in its last $r-1$ arguments. To complete the proof it will suffice to show that it is alternating in its first two arguments. That is, given $v, w \in V$ we need to show that $((\varphi \wedge \psi)\llcorner v)\llcorner w$ is alternating in v, w. But

$$
\iota_{w}\left(\iota_{v}((\varphi \wedge \psi))=\iota_{w}\left(\iota_{v}(\varphi) \wedge \psi+(-1)^{p} \varphi \wedge \iota_{v}(\psi)\right)=A+B+C+D\right.
$$

where

$$
\begin{gathered}
A=\iota_{w}\left(\iota_{v}(\varphi)\right) \wedge \psi \quad \text { and } \quad B=(-1)^{p-1} \iota_{v}(\varphi) \wedge \iota_{w}(\psi) \\
C=(-1)^{p} \iota_{w}(\varphi) \wedge \iota_{v}(\psi) \quad \text { and } \quad D=(-1)^{p}(-1)^{p} \varphi \wedge \iota_{w}\left(\iota_{v}(\psi)\right.
\end{gathered}
$$

A is alternating in v and w because φ is alternating; $B+C$ is clearly alternating in v and w; and D is alternating in v and w because ψ is alternating.

$$
\begin{aligned}
((\varphi \wedge \psi)\llcorner v)\llcorner w & =\left(\left(\varphi\llcorner v) \wedge \psi+(-1)^{p} \varphi \wedge(\psi\llcorner v))\llcorner w\right.\right. \\
& =\left(\left(\varphi\llcorner v)\llcorner w) \wedge \psi+(-1)^{p-1}(\varphi\llcorner v) \wedge(\psi\llcorner w)\right.\right. \\
& +(-1)^{p}\left(\varphi \llcorner w) \wedge \left(\psi\llcorner v)+(-1)^{p}(-1)^{p} \varphi \wedge((\psi\llcorner v)\llcorner w)\right.\right.
\end{aligned}
$$

The sum of the second and third terms in this sum is clearly alternating in v and w and the first and fourth terms are alternating in v and w because φ and ψ are alternating.

Theorem 1.2. Suppose $\varphi \in \bigwedge^{p} V, \psi \in \bigwedge^{q} V$ and $\zeta \in \bigwedge^{r} V$. Then

$$
(\varphi \wedge \psi) \wedge \zeta=\varphi \wedge(\psi \wedge \zeta)
$$

(That is, exterior multiplication is associative.)

Proof. The Theorem holds trivially if any of p, q, r are negative. So we assume that p, q, r are nonnegative and induct on $s=p+q+r$. The Theorem holds trivially if $s=0$ so suppose $s>0$ and that Theorem holds for smaller s. Given $v \in V$ we calculate

$$
\begin{aligned}
((\varphi \wedge \psi) \wedge \zeta)\llcorner v= & \left((\varphi \wedge \psi)\llcorner v) \wedge \zeta+(-1)^{p+q}(\varphi \wedge \psi) \wedge(\zeta\llcorner v)\right. \\
= & \left((\varphi\llcorner v) \wedge \psi) \wedge \zeta+(-1)^{p}(\varphi \wedge(\psi\llcorner v)) \wedge \zeta\right. \\
& \quad+(-1)^{p+q}(\varphi \wedge \psi) \wedge(\zeta\llcorner v) \\
(\varphi \wedge(\psi \wedge \zeta))\llcorner v= & \left(\varphi\llcorner v) \wedge(\psi \wedge \zeta)+(-1)^{p} \varphi \wedge((\psi \wedge \zeta)\llcorner v)\right. \\
= & (\varphi\llcorner v) \wedge(\psi \wedge \zeta) \\
& \quad+(-1)^{p} \varphi \wedge\left((\psi\llcorner v) \wedge \zeta)+(-1)^{p}(-1)^{q} \varphi \wedge(\psi \wedge(\zeta\llcorner v))\right.
\end{aligned}
$$

Now apply the inductive hypothesis.
Theorem 1.3. Suppose $\varphi \in \bigwedge^{p} V$ and $\psi \in \bigwedge^{q} V$. Then

$$
\varphi \wedge \psi=(-1)^{p q} \psi \wedge \varphi
$$

(That is, exterior multiplication is anticommutative in the graded sense.)
Proof. The Theorem holds trivially if either p or 1 is negative. Induct on $r=p+q$. If $r=0$ this amounts to the commutative law for multiplication of real numbers so suppose $r>0$ and that the Theorem holds for smaller r. For any v in V we have

$$
\begin{aligned}
(\varphi \wedge \psi)\llcorner v & =\left(\varphi\llcorner v) \wedge \psi+(-1)^{p} \varphi \wedge(\psi\llcorner v)\right. \\
(-1)^{p q}(\psi \wedge \varphi)\llcorner v & =(-1)^{p q}\left(\psi\llcorner v) \wedge \varphi+(-1)^{p q}(-1)^{q} \psi \wedge(\varphi\llcorner v)\right.
\end{aligned}
$$

Now apply the inductive hypothesis.

Corollary 1.1. Suppose p is odd and $\varphi \in \bigwedge^{p} V$. Then

$$
\varphi \wedge \varphi=0
$$

1.2. \wedge^{p}. For $p \in \mathbb{N}^{+}$and $\omega \in\left(V^{*}\right)^{p}$ we define

$$
\wedge^{p}(\omega) \in \bigwedge^{p} V
$$

by setting $\wedge^{1}(\omega)=\omega_{1}$ and requiring that, if $p>1$,

$$
\wedge^{p}(\omega)=\omega_{1} \wedge \wedge^{p-1}(\omega \mid \llbracket 1, p-1 \rrbracket) .
$$

XXX
Suppose E is a basis for V. For each $a \in E$ we let $a^{*} \in V^{*}$ be such that

$$
a^{*}(b)= \begin{cases}1 & \text { if } b=a, \\ 0 & \text { if } b \in E \sim\{a\} .\end{cases}
$$

Suppose \prec is a well ordering of E. For each $p \in \mathbb{N}$ and each $A \in \Lambda(E, p)$ we let

$$
\mathbf{e}_{A} \in E^{p}
$$

be such that $\mathbf{r n g} \mathbf{e}_{A}=A$ and \mathbf{e}_{A} increasing with respect to \prec; we let

$$
\mathbf{e}_{A}^{*} \in\left\{e^{*}: e \in E\right\}^{p}
$$

be such that the i-th coordinate of \mathbf{e}_{A}^{*} equals $\left(\mathbf{e}_{A}(i)\right)^{*}$; and we let

$$
\mathbf{e}^{A}=\Lambda^{p}\left(\mathbf{e}_{A}^{*}\right) \in \bigwedge^{p} V
$$

Proposition 1.1. The following statements hold:
(i) if A is a finite subset of E and $b \in E \sim A$ then

$$
\mathbf{e}^{A}\llcorner b=0 ;
$$

(ii) if A and B are finite subsets of E and $a \prec b$ whenever $a \in A$ and $b \in B$ then

$$
\mathbf{e}^{A \cup B}=\mathbf{e}^{A} \wedge \mathbf{e}^{B} ;
$$

(iii) If A is a finite subset of $E, a \in A, B=\{x \in A: x \prec a\}$ and $C=\{x \in A$: $a \prec x\}$ then

$$
\mathbf{e}^{A}\left\llcorner a=(-1)^{|B|} \mathbf{e}^{B \cup C} ;\right.
$$

(iv) if A and B are nonempty finite subsets of E then

$$
\mathbf{e}^{A}\left(\mathbf{e}_{B}\right)= \begin{cases}1 & \text { if } A=B, \\ 0 & \text { if } A \neq B\end{cases}
$$

(iv) if $A \in \Lambda(E, p)$ and $e \in E^{p}$. Then

$$
\mathbf{e}^{A}(e)=0 \quad \text { if rng } e \neq A
$$

and, if $\mathbf{r n g} e=A$ and $\sigma=\mathbf{e}_{A}^{-1} \circ e$, then $\sigma \in \Sigma(p)$ and

$$
\mathbf{e}^{A}(e)=\operatorname{sgn}(\sigma) .
$$

Proof. If A is empty (i)-(iv) hold trivially. So suppose $A \neq \emptyset$. We prove (i)-(iii) by induction on $|A|$.

If $b \in E \sim A$ then, letting a be the \prec-first member of A and arguing inductively, we have

$$
\mathbf{e}^{A}\left\llcorner b=\left(a^{*} \wedge \mathbf{e}^{A \sim\{a\}}\right)\left\llcorner b=a^{*}(b) \wedge \mathbf{e}^{A \sim\{a\}}-a^{*} \wedge\left(\left(\mathbf{e}^{A \sim\{a\}}\right)\llcorner b=0+0=0\right.\right.\right.
$$

so (i) holds.

If A and B are as in (ii) then letting a be the \prec first member of A and arguing inductively we find that

$$
\begin{aligned}
\mathbf{e}^{A \cup B} & =a^{*} \wedge \mathbf{e}^{(A \sim\{a\}) \cup B} \\
& =a^{*} \wedge\left(\mathbf{e}^{A \sim\{a\}} \wedge \mathbf{e}^{B}\right) \\
& =\left(a^{*} \wedge \mathbf{e}^{A \sim\{a\}}\right) \wedge \mathbf{e}^{B} \\
& =\mathbf{e}^{A} \wedge \mathbf{e}^{B}
\end{aligned}
$$

so (ii) holds.
If A, a and B, C are as in (iii) we use (ii) and (i) and argue inductively to obtain

$$
\begin{aligned}
\mathbf{e}^{A}\llcorner a= & \left(\mathbf{e}^{B} \wedge a^{*} \wedge \mathbf{e}^{C}\right)\llcorner a \\
= & \left(\mathbf{e}^{B}\llcorner a) \wedge a^{*} \wedge \mathbf{e}^{C}+(-1)^{|B|} \mathbf{e}^{B} \wedge\left(a^{*}\llcorner a) \wedge \mathbf{e}^{C}\right.\right. \\
& \quad+(-1)^{|B|+1} \mathbf{e}^{B} \wedge a^{*} \wedge\left(\mathbf{e}^{C}\llcorner a)\right. \\
= & (-1)^{|B|} \mathbf{e}^{B} \wedge \mathbf{e}^{C} \\
= & (-1)^{|B|} \mathbf{e}^{B \cup C}
\end{aligned}
$$

so (iii) holds.
Suppose A is a nonempty finite subsets of E and $e \in V^{|A|}$. If $i \in \llbracket 1,|A| \rrbracket$ and $e_{i} \notin A$ we let τ transpose 1 and i and let $f \in E^{|A|-1}$ be such that $e \circ \tau=\overline{e_{i} f}$. Then

$$
\mathbf{e}^{A}(e)=-\mathbf{e}^{A}(e \circ \tau)=\mathbf{e}^{A}\left(\overline{e_{i} f}\right)=\left(\mathbf{e}^{A}\left\llcorner e_{i}\right)(f)=0\right.
$$

by (i). If $\mathbf{r n g} e=\mathbf{r n g} A$ it evident that $\sigma=\mathbf{e}_{A}^{-1} \circ e \in \Sigma(|A|)$ so

$$
\mathbf{e}_{A}(e)=\mathbf{e}_{A}\left(\mathbf{e}_{A} \circ \sigma\right)=\operatorname{sgn}(\sigma) \mathbf{e}^{A}\left(\mathbf{e}_{A}\right)=1
$$

since, letting $B=A \sim\{a\}$ and arguing inductively using (i),

$$
\mathbf{e}_{A}\left(\mathbf{e}_{A}\right)=\left(a^{*} \wedge \mathbf{e}^{B}\right)\left(\overline{a \mathbf{e}_{A \sim\{A\}}}\right)=\left(a^{*}(a) \mathbf{e}^{B}-a^{*} \wedge\left(\left(\mathbf{e}^{B}\right)\llcorner a)\right)\left(\mathbf{e}_{B}=1+0=1 .\right.\right.
$$

BBB
Theorem 1.4. Suppose $\phi, \psi \in \bigwedge^{p} V$ and

$$
\phi\left(\mathbf{e}_{A}\right)=\psi\left(\mathbf{e}_{A}\right) \quad \text { for all } A \in \Lambda(E, p)
$$

Then $\phi=\psi$.
Proof. Suppose $e \in \Lambda(E, p)$ Let $A=\mathbf{r n g} E$ and let $\sigma \in \Sigma(p)$ be such that $e=\mathbf{e}_{A} \circ \sigma$.
Then

$$
\phi(e)=\operatorname{sgn}(\sigma) \phi\left(\mathbf{e}_{A}\right)=\operatorname{sgn}(\sigma) \psi\left(\mathbf{e}_{A}\right)=\psi(e)
$$

It follows from ?? that $\phi=\psi$.
Corollary 1.2. Suppose $\phi \in \Lambda^{p} V$. Then

$$
\left\{v \in E^{p}: \phi(v) \neq 0\right\} \quad \text { is finite }
$$

and

$$
\begin{equation*}
\phi(v)=\sum_{A \in \Lambda(E, p)} \mathbf{e}^{A}(v) \phi\left(\mathbf{e}_{A}\right) \tag{1}
\end{equation*}
$$

Proof. The first assertion of the corollary follows from ?? and that implies that the right hand sice of (1) defines a member of $\bigwedge^{p}(V, Z)$. That both sides of (1) have the same value on \mathbf{e}_{B} for any $B \in \Lambda(E, p)$ follows from ??.

Theorem 1.5. Suppose $\omega \in\left(V^{*}\right)^{p}$. Then

$$
\begin{equation*}
\wedge^{p}(\omega)(v)=\sum_{\sigma \in \Sigma(p)} \operatorname{sgn}(\sigma) \Pi_{i=1}^{p} \omega_{i}\left(v_{\sigma(i)}\right) \quad \text { for any } v \in V^{p} \tag{2}
\end{equation*}
$$

Proof. For each $v \in V^{p}$ let $\psi(v)$ be the right hand side of (2). So $\psi \in \bigotimes^{p}(V, Z)$, For $\rho \in \Sigma(p)$ and $v \in V^{p}$ we have

$$
\begin{aligned}
\psi(v \circ \rho) & =\sum_{\sigma \in \Sigma(p)} \operatorname{sgn}(\sigma) \Pi_{i=1}^{p} \omega_{i}\left((v \circ \rho)_{\sigma(i)}\right) \\
& =\sum_{\sigma \in \Sigma(p)} \operatorname{sgn}\left(\sigma \circ \rho^{-1}\right) \Pi_{i=1}^{p} \omega_{i}\left(v \circ_{\sigma(i)}\right) \\
& =\operatorname{sgn}(\rho) \sum_{\sigma \in \Sigma(p)} \operatorname{sgn}(\sigma) \Pi_{i=1}^{p} \omega_{i}\left(v \circ_{\sigma(i)}\right) \\
& =\operatorname{sgn}(\rho) \psi(v)
\end{aligned}
$$

Thus $\psi \in \bigwedge^{p}(V, Z)$. Since ?? implies that both sides of (2) have the same value on \mathbf{e}_{A} for any $A \in \Lambda(E, p)$ we infer from ?? that (2) holds.

FF
Corollary 1.3. Suppose $n=\operatorname{dim} V<\infty$. Then

$$
\begin{equation*}
\phi=\phi\left(\mathbf{e}_{E}\right) \mathbf{e}^{E} \quad \text { for } \phi \in \bigwedge^{n} V \tag{3}
\end{equation*}
$$

Moreover, $\mathbf{e}^{E}\left(\mathbf{e}_{E}\right)=1$ and $\left\{\mathbf{e}^{E}\right\}$ is basis for $\operatorname{dim} \bigwedge^{n} V$. In particular, $\operatorname{dim} \bigwedge^{n} V=$ 1.

Proof. (3) holds since $\{A: A \subset E$ and $|A|=n\}=E$ by ?? which also implies that $\operatorname{span} \mathbf{e}_{E}=\Lambda^{n} V$. That $\mathbf{e}^{E}\left(\mathbf{e}_{E}\right)=1$ follows from Proposition ?? and this implies $\left\{\mathbf{e}^{E}\right\}$ is a basis for $\Lambda^{n} V$.

Proposition 1.2. For $\phi, \psi \in \bigwedge^{n} V$ with $\psi \neq 0$ there is unique

$$
\frac{\phi}{\psi} \in \mathbb{R}
$$

such that

$$
\frac{\phi}{\psi}=\frac{\phi(v)}{\psi(v)} \quad \text { whenever } v \in V^{n} \text { and span } \mathbf{r n g} v=V \text {. }
$$

Moreover,

$$
\phi=\frac{\phi}{\psi} \psi
$$

Proof. This is a straightforward consequence of the foregoing.
Proposition 1.3. Suppose $L \in \mathbb{E m d}(V)$. There is a unique $r \in \mathbb{R}$ such that

$$
\begin{equation*}
\left(\bigwedge^{n} L\right)(\phi)=r \xi \quad \text { for } \phi \in V^{n} \tag{4}
\end{equation*}
$$

Proof. This holds since $\bigwedge^{n} L \in \mathbb{E m d}\left(\bigwedge^{n} V\right)$ and $\operatorname{dim} \bigwedge^{n} V=1$.

Definition 1.3. For $L \in \mathbb{E m} d(V)$ we let

$$
\operatorname{det} L=r
$$

where r is as in (4).
Theorem 1.6. Suppose $L, M \in \mathbb{E m d}(V)$. Then

$$
\operatorname{det}(L \circ M)=(\operatorname{det} L)(\operatorname{det} M)
$$

Proof. If $\phi \in \bigwedge^{n} V$ then

$$
\begin{aligned}
\operatorname{det}(L \circ M) \phi & =\left(\bigwedge^{n}(L \circ M)\right)(\phi) \\
& =\left(\bigwedge^{n} M\right)\left(\left(\bigwedge^{n} L\right)(\phi)\right) \\
& =\left(\bigwedge^{n} M\right)((\operatorname{det} L) \phi) \\
& =(\operatorname{det} L)\left(\left(\bigwedge^{n} M\right)(\phi)\right) \\
& =(\operatorname{det} L)(\operatorname{det} M) \phi .
\end{aligned}
$$

1.3. The signature of a permutation revisited. Suppose $n \in \mathbb{N}^{+}$. Let \mathbf{e}_{i}, $i \in \llbracket 1, n \rrbracket$, be the standard basis vectors for \mathbb{R}^{n}. For $\rho \in \Sigma(\llbracket 1, n \rrbracket)$ let $L_{\rho} \in \mathbb{G} \mathbb{L}\left(\mathbb{R}^{n}\right)$ be such that

$$
L_{\rho}\left(\mathbf{e}_{i}\right)=\mathbf{e}_{\rho(i)} \quad \text { for } i \in \llbracket 1, n \rrbracket .
$$

A simple calculation shows that

$$
L_{\rho} \circ L_{\sigma}=L_{\rho \circ \sigma} \quad \text { for } \sigma, \rho \in \Sigma(\llbracket 1, n \rrbracket)
$$

It follows from ?? that

$$
\Sigma(\llbracket 1, n \rrbracket) \ni \sigma \mapsto \operatorname{det} L_{\sigma} \in\{-1,1\}
$$

is a homomorphism. Since

$$
\operatorname{det} \sigma=-1 \quad \text { if } \sigma \text { is a transposition of } \llbracket 1, n \rrbracket
$$

we find that

$$
\operatorname{sgn}(\sigma)=\operatorname{det} L_{\sigma} \quad \text { for } \sigma \in \Sigma(\llbracket 1, n \rrbracket)
$$

Corollary 1.4. Suppose A and B are finite subsets of $E,|A|=|B|$ and σ is a permutation of $\llbracket 1,|A| \rrbracket$. Then

$$
\mathbf{e}^{B}\left(\mathbf{e}_{A} \circ \sigma\right)= \begin{cases}\operatorname{sgn}(\sigma) & \text { if } B=A \\ 0 & \text { if } B \neq A\end{cases}
$$

SS

2. The shuffle formula.

Suppose $m, N \in \mathbb{N}^{+}$. We let

$$
\mathcal{I}(m, N)
$$

be the set of m-tuples I of finite nonempty subsets of \mathbb{N}^{+}such that
(i) $I_{i}=\llbracket \min I, \max I \rrbracket$ for $i \in \llbracket 1, m \rrbracket$;
(ii) $\min I_{1}=1$;
(iii) $\min I_{i+1}=\max I_{i}+1$ for $\left.i \in \llbracket 1, m\right)$);
(iv) $N=\sum_{i=1}^{m}\left|I_{i}\right|$.

If $I \in \mathcal{I}(m, N)$ we let

$$
\operatorname{Sh}(I)
$$

be the set of permutations σ of $\llbracket 1, N \rrbracket$ such that $\sigma \mid I_{i}$ is increasing for $i \in \llbracket 1, m \rrbracket$; such a σ is called a shuffle of type I. Evidently,

$$
\begin{equation*}
\operatorname{rev}(\sigma)=\bigcup_{i=1}^{m} \bigcup_{j=i+1}^{m}\left\{(k, l) \in I_{i} \times I_{j}: \sigma(i)>\sigma(j)\right\} \tag{5}
\end{equation*}
$$

Suppose $m \in \mathbb{N}^{+}, p$ is an m-tuple of positive integers. Let $P_{0}=0$ and, for $i \in \llbracket 1, m \rrbracket$, let $P_{i}=\sum_{j=1}^{i} p_{i}$. For $i \in \llbracket 1, m \rrbracket$ we let $I_{i}=\llbracket P_{i-1}+1, P_{i} \rrbracket$; Thus $I \in \mathcal{I}(m)$.

Theorem 2.1. Suppose ϕ is an m-tuple such that $\phi_{i} \in \bigwedge^{p_{i}} V$ for $i \in \llbracket 1, m \rrbracket$ and $v \in V^{P_{m}}$. Then

$$
\begin{equation*}
\left(\bigwedge_{i=1}^{m} \phi_{i}\right)(v)=\sum_{\sigma \in \mathbf{S h}(I)} \operatorname{sgn}(\sigma) \Pi_{i=1}^{m} \phi_{i}\left(v \circ\left(\sigma \mid I_{i}\right)\right) . \tag{6}
\end{equation*}
$$

Proof. We prove this by induction on m. (6) holds trivially if $m=1$. Suppose $w \in V^{P_{m}-1}$ is such that $v=\overline{v_{1} w}$.
2.1. The case $m=2$. Let

$$
\Omega=\left(\phi_{1} \wedge \phi_{2}\right)(v) ; \quad \Omega_{1}=\left(\left(\phi_{1}\left\llcorner v_{1}\right) \wedge \phi_{2}\right)(w) ; \quad \Omega_{2}=(-1)^{p_{1}}\left(\phi_{1} \wedge\left(\phi_{2}\left\llcorner v_{1}\right)\right)(w)\right.\right.
$$

Thus

$$
\Omega=\Omega_{1}+\Omega_{2}
$$

Lemma 2.1. We have

$$
\begin{equation*}
\Omega_{1}=\sum_{\sigma \in \mathbf{S h}(I), \sigma(1)=1} \operatorname{sgn}(\sigma) \phi_{1}\left(v \circ\left(\sigma \mid I_{1}\right)\right) \phi_{2}\left(v \circ\left(\sigma \mid I_{2}\right)\right) . \tag{7}
\end{equation*}
$$

Proof. Induct on p_{1}. If $p_{1}=1$ then $\Omega_{1}=\phi_{1}\left(v_{1}\right) \phi_{2}(w)$ so (7) holds.
Suppose $p_{1}>1$. Let $J_{1}=\llbracket 1, p_{1}-1 \rrbracket$ and let $J_{2}=\llbracket p_{1}, p_{1}+p_{2}-1 \rrbracket$. Arguing inductively we find that

$$
\begin{aligned}
\Omega_{1} & =\sum_{\rho \in \mathbf{S h}(J)} \operatorname{sgn}(\rho)\left(\phi _ { 1 } \llcorner v _ { 1 }) (w \circ (\rho | J _ { 1 })) \phi _ { 2 } \left(\left(w \circ\left(\rho \mid J_{2}\right)\right)\right.\right. \\
& =\sum_{\sigma \in \mathbf{S h}(I), \sigma(1)=1} \operatorname{sgn}(\sigma) \phi_{1}\left(v \circ\left(\sigma \mid I_{1}\right)\right) \phi_{2}\left(\left(w \circ\left(\sigma \mid I_{2}\right)\right) .\right.
\end{aligned}
$$

Lemma 2.2. We have

$$
\begin{equation*}
\Omega_{2}=\sum_{\sigma \in \mathbf{S h}(I), \sigma(1)=p_{1}+1} \operatorname{sgn}(\sigma) \phi_{1}\left(v \circ\left(\sigma \mid I_{1}\right)\right) \phi_{2}\left(v \circ\left(\sigma \mid I_{2}\right)\right) . \tag{8}
\end{equation*}
$$

Proof. Induct on p_{2}. If $p_{2}=1$ then $\Omega_{2}=(-1)^{p_{1}} \phi_{1}(w) \phi_{2}\left(v_{1}\right)$ so (8) holds.

Suppose $p_{2}>1$. Let $J_{1}=\llbracket 1, p_{1} \rrbracket$ and let $J_{2}=\left(\left(p_{1}, p_{1}+p_{2}-1 \rrbracket\right.\right.$. Arguing inductively we find that

$$
\begin{aligned}
\Omega_{2} & =(-1)^{p_{1}} \sum_{\rho \in \mathbf{S h}(J)} \operatorname{sgn}(\rho) \phi_{1}\left(w \circ\left(\rho \mid J_{1}\right)\right)\left(\phi _ { 2 } \llcorner v _ { 1 }) \left(\left(w \circ\left(\rho \mid J_{2}\right)\right)\right.\right. \\
& =\sum_{\sigma \in \mathbf{S h}(I), \sigma(1)=p_{1}+1} \operatorname{sgn}(\sigma) \phi_{1}\left(v \circ\left(\sigma \mid I_{1}\right)\right) \phi_{2}\left(\left(v \circ\left(\sigma \mid I_{2}\right)\right) .\right.
\end{aligned}
$$

ZZ

$$
\begin{gathered}
I \in \mathcal{I}(m, N) \\
J \in \mathcal{I}(2, N) \quad J_{1}=\bigcup_{i=1}^{m} I_{i} \quad J_{2}=I_{m+1} \\
K \in \mathcal{I}\left(m, N-\left|I_{m+1}\right|\right) \quad K_{i}=I_{i} \quad \text { for } i \in \llbracket 1, m \rrbracket \\
\mathbf{g}: \mathbf{S h}(J) \times \mathbf{S h}(K) \rightarrow \mathbf{S h}(I) \\
\mathbf{g}(\alpha, \beta)=(\alpha \circ \beta) \cup\left(\alpha \mid I_{m+1}\right)
\end{gathered}
$$

Lemma 2.3. $\operatorname{rng} \mathrm{g}=\operatorname{Sh}(I)$ and

$$
\begin{equation*}
\operatorname{sgn}(\mathbf{g}(\alpha, \beta)=\mathbf{\operatorname { s g n }}(\alpha) \mathbf{\operatorname { s g n }}(\beta) \quad \text { for } \alpha, \beta \in \mathbf{S h}(J) \times \mathbf{S h}(K) \tag{9}
\end{equation*}
$$

Moreover,
$\mathbf{g}(\alpha, \beta) \mid I_{i}=\left(\alpha \mid J_{1}\right) \circ\left(\beta \mid K_{1}\right) \quad$ for each $i \in \llbracket 1, m \rrbracket$ and $\quad \mathbf{g}(\alpha, \beta)\left|I_{m+1}=\alpha\right| J_{2}$.
Proof. Let $\gamma=\mathbf{g}(\alpha, \beta) \in \mathbf{S h}(I)$. Since $\gamma \mid I_{i}$ is increasing for each $i \in \llbracket 1, m+1 \rrbracket$ and since $\mathbf{r n g} \gamma \subset \llbracket 1, m+1 \rrbracket$ we find that $\gamma \in \mathbf{S h}(I)$.

Suppose $i, j \in \llbracket 1, m+1 \rrbracket$ and $i<j$. If $j \leq m$ we find that

$$
\left\{(k, l) \in I_{i} \times I_{j}: \gamma(k)>\gamma(l)\right\}=\left\{(k, l) \in I_{i} \times I_{l}: \beta(k)>\beta(l)\right\}
$$

and

$$
\left\{(k, l) \in I_{i} \times I_{j}: \alpha(k)>\alpha(l)\right\}=\emptyset
$$

since α is increasing on J_{1}. Also,

$$
\left\{(k, l) \in I_{i} \times I_{m+1}: \gamma(k)>\gamma(l)\right\}=\left\{(k, l) \in I_{i} \times I_{m+1}: \alpha(\beta(k))>\alpha(l)\right\}
$$

so, as β permutes J_{1},

$$
\bigcup_{i=1}^{m}\left\{(k, l) \in I_{i} \times I_{m+1}: \gamma(k)>\gamma(l)\right\}=\bigcup_{i=1}^{m}\left\{(k, l) \in I_{i} \times I_{m+1}: \alpha(k)>\alpha(l)\right\} .
$$

Thus $\boldsymbol{\operatorname { r e v }}(\gamma)$ is the disjoint union of $\operatorname{rev}(\alpha)$ and $\boldsymbol{\operatorname { r e v }}(\beta)$ so (9) holds.

Let $\Phi=\bigwedge_{i=1}^{m} \phi_{i}$. We have

$$
\begin{aligned}
\left(\bigwedge_{i=1}^{m+1} \phi_{i}\right)(v) & =\left(\Phi \wedge \phi_{m+1}\right)(v) \\
& =\sum_{\alpha \in \mathbf{S h}(J)} \operatorname{sgn}(\alpha) \Phi\left(v \circ\left(\alpha \mid J_{1}\right)\right) \phi_{m+1}\left(v \circ\left(\alpha \mid J_{2}\right)\right. \\
& \left.=\sum_{\alpha \in \operatorname{Sh}(J)} \operatorname{sgn}(\alpha)\left(\sum_{\beta \in \operatorname{Sh}(K)} \operatorname{sgn}(\beta) \Pi_{i=1}^{m} \phi_{i}\left(v \circ\left(\alpha \mid J_{1}\right) \circ\left(\beta \mid K_{i}\right)\right)\right)\right) \phi_{m+1}\left(v \circ\left(\alpha \mid J_{2}\right)\right. \\
& =
\end{aligned}
$$

PP

3. Symmetric algebra.

For each $m \in \mathbb{N}$

$$
\Xi(E, m)
$$

be the set of $\alpha: E \rightarrow \mathbb{N}$ such that

$$
\|\alpha\|=\sum_{a \in E} \alpha(a)=m
$$

Proposition 3.1. Suppose E is finite. Then

$$
|\Xi(E, m)|=\binom{m+|E|-1}{|E|-1} .
$$

Proof. Suppose $\lambda \in \Lambda(|E|-1+m,|E|-1)$. Let $\mathbf{A}(\lambda) \in \Xi(m+|E|-1,|E|-1)$ be such that

$$
\mathbf{A}(\lambda)(i)= \begin{cases}\lambda(1)-1 & \text { if } i=1 \\ \lambda(i)-\lambda(i-1)-1 & \text { if } i \in((1,|E|-1 \rrbracket\end{cases}
$$

Suppose $\alpha \in \Xi(|E|, m)$. Let $\mathbf{L}(\alpha) \in \Lambda(|E|-1+m,|E|-1)$ be such that

$$
\mathbf{L}(\alpha)(i)=i+\sum_{j=1}^{i} \alpha(j) \quad \text { for } i \in \llbracket 1,|E|-1 \rrbracket .
$$

Now observe that \mathbf{A} and \mathbf{L} are inverse to one another.
LL

$$
\mathbf{A}(\mathbf{L}(\alpha))(1)=\mathbf{L}(\alpha)(1)-1=1+\left(\sum_{j=1}^{1} \alpha(j)\right)-1=\alpha(1)
$$

If $i>1$ then

$$
\begin{gathered}
\mathbf{A}(\mathbf{L}(\alpha))(i)=\mathbf{L}(\alpha)(i)-\mathbf{L}(\alpha)(i-1)-1=i+\sum_{j=1}^{i} \alpha(j)-\left(i-1+\sum_{j=1}^{i-1} \alpha(j)\right)-1=\alpha(i) \\
\mathbf{L}(\mathbf{A}(\lambda))(i)=i+\sum_{j=1}^{i} \mathbf{A}(\lambda)(j)=i+\lambda(1)-1+\sum_{j=2}^{i} \lambda(j)-\lambda(j-1)-1=\lambda(i)
\end{gathered}
$$

LL If $\alpha \in \Xi(E, m), a \in E$ and $\alpha(a)>0$ we let $\alpha \downarrow a \in \Xi(E, m-1)$ be such that

$$
(\alpha \downarrow a)(b)= \begin{cases}\alpha(a)-1 & \text { if } b=a \\ \alpha(b) & \text { if } b \in E \sim\{a\} .\end{cases}
$$

For $\alpha \in \Xi(E, m)$ we define

$$
\mathbf{e}^{\alpha} \in \bigodot^{m} V
$$

by induction on m by letting

$$
\mathbf{e}^{\alpha}=1 \quad \text { if } m=0
$$

and, if $m>0$, by requiring that

$$
\mathbf{e}^{\alpha}=a^{*} \odot \mathbf{e}^{\alpha \downarrow a} \quad \text { where } a \text { is the } \prec \text {-first member of }\{b \in E: \alpha(b) \neq 0\} .
$$

If $m>0$ and $\alpha \in \Xi(E, m)$ we define

$$
\mathbf{e}_{\alpha} \in V^{m}
$$

by requiring that

$$
\mathbf{e}_{\alpha}=\overline{a \mathbf{e}_{\alpha \downarrow a}} \quad \text { where } a \text { is the } \prec \text {-first member of }\{b \in E: \alpha(b) \neq 0\} .
$$

Proposition 3.2. Suppose $p, q \in \mathbb{N}$. The following statements hold:
(i) if $\alpha \in \Xi(E, p)$ and $b \in E$ then

$$
\mathbf{e}^{\alpha}\llcorner b=0 \quad \text { if } \alpha(b)=0 ;
$$

(ii) if $\alpha \in \Xi(E, p)$ and $\beta \in \Xi(E, q)$ then

$$
\mathbf{e}^{\alpha+\beta}=\mathbf{e}^{\alpha} \odot \mathbf{e}^{\beta}
$$

(iii) If $\alpha \in \Xi(E, p), a \in E$ and $\alpha(a) \neq 0$ then

$$
\mathbf{e}^{\alpha}\left\llcorner a=\mathbf{e}^{\alpha \downarrow a}\right.
$$

and, if $p>0$,

$$
\phi\left(\mathbf{e}_{\alpha}\right)=\phi\left(\overline{a \mathbf{e}_{\alpha \downarrow a}}\right) \quad \text { for } \phi \in \bigwedge^{p} V ;
$$

(iv) if $p>0$ and $\alpha, \beta \in \Xi(E, p)$ then

$$
\mathbf{e}^{\alpha}\left(\mathbf{e}_{\beta}\right)= \begin{cases}1 & \text { if } \alpha=\beta \\ 0 & \text { if } \alpha \neq \beta\end{cases}
$$

ZZ
Proposition 3.3. Suppose $p \in \mathbb{N}^{+}, \phi \in \bigodot^{p}(V, Z)$ and $\phi\left(\mathbf{e}_{\alpha}\right)=0$ for all $\alpha \in$ $\Xi(P, p)$. Then $\phi=0$.

Proof. $\left(\phi\llcorner a)\left(\mathbf{e}_{\beta}\right)=0\right.$ for all $a \in E$ and $\beta \in \Xi(E, p-1)$ so, inducting on p, we find that

$$
\phi(v)=\sum_{a \in E} a^{*}\left(v_{1}\right)(\phi\llcorner a)(w)=0 .
$$

Theorem 3.1. Suppose $p \in \mathbb{N}^{+}, \phi \in \bigodot^{p}(V, Z)$ and $v \in V^{p}$. Then

$$
\phi(v)=\sum_{\alpha \in \Xi(E, p)} \mathbf{e}^{\alpha}(v) \phi\left(\mathbf{e}_{\alpha}\right) .
$$

Proof. Both sides have the same value on $\mathbf{e}_{\beta}, \beta \in \Xi(E, p)$.
Induct on p. This obviously holds if $p=1$. Suppose $p>1$. Let $w \in V^{p-1}$ be such that $v=\overline{v_{1} w}$. Then

$$
\begin{aligned}
\phi(v) & =\left(\phi\left\llcorner v_{1}\right)(w)\right. \\
& =\sum_{b \in E} b^{*}\left(v_{1}\right)(\phi\llcorner b)(w) \\
& =\sum_{b \in E} b^{*}\left(v_{1}\right) \sum_{\beta \in \Xi(E, p-1)} \mathbf{e}^{\beta}(w)\left(\phi\llcorner b)\left(\mathbf{e}_{\beta}\right)\right. \\
& =\sum_{b \in E} b^{*}\left(v_{1}\right) \sum_{\beta \in \Xi(E, p-1)} \mathbf{e}^{\beta}(w) \phi\left(\overline{b \mathbf{e}_{\beta}}\right)
\end{aligned}
$$

Since $\mathbf{e}^{\alpha}\llcorner b=0$ if $\alpha \in \Xi(E, p)$ and $\alpha(b)=0$,

$$
\begin{aligned}
\sum_{\alpha \in \Xi(E, p)} \mathbf{e}^{\alpha}(v) \phi\left(\mathbf{e}_{\alpha}\right) & =\sum_{b \in E} b^{*}\left(v_{1}\right) \sum_{\alpha \in \Xi(E, p)}\left(\mathbf{e}^{\alpha}\llcorner b)(w) \phi\left(\mathbf{e}_{\alpha}\right)\right. \\
& =\sum_{b \in E} b^{*}\left(v_{1}\right) \sum_{\alpha \in \Xi(E, p), \alpha(b)>0}\left(\mathbf{e}^{\alpha}\llcorner b)(w) \phi\left(\mathbf{e}_{\alpha}\right)\right. \\
& =\sum_{b \in E} b^{*}\left(v_{1}\right) \sum_{\alpha \in \Xi(E, p), \alpha(b)>0} \mathbf{e}^{\alpha \downarrow b}(w) \phi\left(\overline{b \mathbf{e}_{\alpha \downarrow b}}\right) .
\end{aligned}
$$

4. The covariant exterior product.

For $p \in \mathbb{N}$ we define

$$
\wedge_{p} \in \begin{cases}\mathbb{L i m}\left(\mathbb{R}, \bigwedge^{0}\left(V^{*}\right)\right) & \text { if } p=0 \\ \mathbb{L i m}\left(V, \bigwedge^{1}\left(V^{*}\right)\right) & \text { if } p=1 \\ \operatorname{Mu\mathbb {M}\operatorname {li}\mathbb {Lim}(V^{p},\bigwedge ^{p}(V^{*}))} & \text { if } p=0\end{cases}
$$

by induction on p as follows. Let $\vartheta: V \rightarrow V^{* *}$ be as in ??. If $p=0$ we let $\wedge_{p}(r)=r$ for $r \in \mathbb{R}$; if $p=1$ we let $\wedge_{p}(v)=\vartheta(v)$ for $v \in V$; and if $p>1$ we require that

$$
\wedge_{p}(v)=\vartheta\left(v_{1}\right) \wedge \wedge_{p-1}(w) \quad \text { if } v \in V^{p}, w \in V^{p-1} \text { and } v=\overline{v_{1} w}
$$

NEW

$$
\begin{aligned}
\wedge_{p}(v) & =\wedge^{p}(\vartheta \circ v) \\
\wedge_{p}\left(\mathbf{e}_{A}\right)\left(\mathbf{e}_{B}^{*}\right) & = \begin{cases}1 & \text { if } A=B \\
0 & \text { if } A \neq B\end{cases}
\end{aligned}
$$

NEW
Definition 4.1. For $p \in \mathbb{N}$ we let

$$
\bigwedge_{p} V=\operatorname{span}\left\{\wedge_{p}(v): v \in V^{p}\right\}
$$

Proposition 4.1. Suppose $p, q \in \mathbb{N}, u \in V^{p}$ and $v \in V^{q}$. Then

$$
\wedge_{p}(u) \wedge \wedge_{q}(v)=\wedge_{p+q}(\overline{u v}) \in \bigwedge_{p+q} V .
$$

Proof. Induct on p. If $t \in V, u \in V^{p}$ and $v \in V^{q}$ then

$$
\begin{aligned}
\wedge_{p+1}(\overline{t u}) \wedge \wedge_{q}(v) & =\left(\vartheta(t) \wedge \wedge_{p}(u)\right) \wedge \wedge_{q}(v) \\
& =\vartheta(t) \wedge\left(\wedge_{p}(u) \wedge \wedge_{q}(v)\right) \\
& =\vartheta(t) \wedge\left(\wedge_{p+q}(\overline{u v})\right) \\
& =\wedge_{p+q+1}(\overline{\overline{t u v}}) \\
& =\wedge_{p+q+1}(\overline{\overline{t u} v}) .
\end{aligned}
$$

Theorem 4.1. Suppose $p, q, r \in \mathbb{N}$. Then

$$
\begin{gathered}
\xi \wedge \eta=(-1)^{p q} \eta \wedge \xi \text { for } \xi \in \bigwedge_{p} V \text { and } \eta \in \bigwedge_{q} V \\
(\xi \wedge \eta) \wedge \zeta=\xi \wedge(\eta \wedge \zeta) \text { for } \xi \in \bigwedge_{p} V, \eta \in \bigwedge_{q} V \text { and } \zeta \in \bigwedge_{r} V
\end{gathered}
$$

4.1. Bases. Suppose E is a basis for V.

Theorem 4.2. Suppose $p \in \mathbb{N}^{+}$. We have

$$
\wedge_{p}(v)=\sum_{A \subset E,|A|=p} \mathbf{e}^{A}(v) \wedge_{p}\left(\mathbf{e}_{A}\right) \quad \text { for } v \in V^{p} .
$$

Proof. Induct on p. Obvious if $p=1$. Suppose $u \in V$ and $v \in V^{p}$. Arguing inductively we find that

$$
\begin{aligned}
\wedge_{p}(\overline{u v}) & =\vartheta(u) \wedge \wedge(v) \\
\left.\left(\sum_{a \in E} a^{*}(u) a\right) \wedge \sum_{A \subset E,|A|=p} \mathbf{e}^{A}(v)\right) \wedge_{p}\left(\mathbf{e}_{A}\right) & \\
& =\sum_{a \in E} \sum_{A \subset E,|A|=p} a^{*}(u) \mathbf{e}^{A}(v) \vartheta(a) \wedge_{p}\left(\mathbf{e}_{A}\right) \\
& =\sum_{C \subset E,|C|=p+1} \mathbf{e}^{C}(\overline{u v}) \wedge_{p+1}\left(\mathbf{e}_{C}\right)
\end{aligned}
$$

since, by ??,

$$
a^{*}(u) \mathbf{e}^{A}(v) \vartheta(a) \wedge_{p}\left(\mathbf{e}_{A}\right)= \begin{cases}b e^{C}(\overline{u v}) \wedge_{p+1}\left(\mathbf{e}_{C}\right) & \text { if } a \notin A, \\ 0 & \text { if } a \in A .\end{cases}
$$

Definition 4.2. If A is a finite subset of E we define

$$
\mathbf{e}_{A}^{*} \in\left(V^{*}\right)^{|A|}
$$

by letting $\mathbf{e}_{\{a\}}^{*}=a^{*}$ if $A=\{a\}$ for some $a \in E$ and requiring that

$$
\mathbf{e}_{A}^{*}=\overline{a^{*} \mathbf{e}_{A \sim\{a\}}^{*}} \text { if }|A|>1 \text { and } a \text { is the } \prec \text {-first member of } A \text {. }
$$

Theorem 4.3. Suppose $p \in \mathbb{N}^{+}, A \subset E, B \subset E$ and $|A|=p=|B|$. Then

$$
\wedge_{p}\left(\mathbf{e}_{A}\right)\left(\mathbf{e}_{B}^{*}\right)= \begin{cases}1 & \text { if } A=B, \\ 0 & \text { if } A \neq B\end{cases}
$$

Proof. Straightforward induction on p.
Theorem 4.4. $\left\{\mathbf{e}_{p}(A): A \subset E\right.$ and $\left.|A|=p\right\}$ is a basis for $\bigwedge_{p} V$.
4.1.1. The universal property of \bigwedge_{*}.

Definition 4.3. We define

$$
\mathbf{M}_{\Lambda_{p} V, Z}: \mathbb{L i m}\left(\mathbb{L i m}\left(\bigwedge_{p} V, Z\right), \bigwedge^{p}(V, Z)\right)
$$

by letting

$$
\mathbf{M}_{\wedge_{p} V, Z}(L)=L \circ \wedge_{p} \quad \text { for } L \in \mathbb{L} \operatorname{im}\left(\bigwedge_{p} V, Z\right)
$$

We let

$$
\mathbf{L}_{\bigwedge_{p} V, Z}=\mathbf{M}_{\Lambda_{p} V, Z}^{-1}
$$

Theorem 4.5. We have

$$
\mathbf{L}_{\bigwedge_{p} V, Z} \in \mathbb{I}_{\mathbb{S O}}\left(\mathbb{L i m}\left(\bigwedge_{p} V, Z\right), \bigwedge^{p}(V, Z)\right)
$$

In particular, for any $\mu \in \bigwedge^{p}(V, Z)$ there is one and only one $L \in \mathbb{L i m}\left(\bigwedge_{p} V, Z\right)$ such that

$$
\mu=L \circ \wedge_{p}
$$

Moreover, if Y is a vector space and $l \in \mathbb{L i m}(Y, Z)$ then

$$
l \circ \mathbf{L}_{\wedge_{p} V, Y}(\mu)=\mathbf{L}_{\bigwedge_{p} V, Z}(l \circ \mu)
$$

for any $\mu \in \bigwedge^{p}(V, Y)$.
Remark 4.1. In particular,

$$
\mathbf{L}_{\Lambda_{p} V, \mathbb{R}} \in \mathbb{I}_{\mathbb{S O}}\left(\left(\bigwedge_{p} V\right)^{*}, \bigwedge^{p} V\right)
$$

Proof. The final assertion of the Theorem is an obvious consequence of the first assertion of the Theorem.

Suppose $L \in \operatorname{ker} \mathbf{M}_{\wedge_{p} V, Z}$. Then L vanishes on the range of \wedge_{p} so L vanishes on span rng \wedge_{p} and thus equals 0 . So $\operatorname{ker} \mathbf{M}_{\wedge_{p} V, Z}=\{0\}$.

Let E be a basis for V. Let \prec be a well ordering of E and for $A \subset E$ with $|A|=p$ let \mathbf{e}^{A} and \mathbf{e}_{A} be as in ??. Suppose $\mu \in \bigwedge^{p}(V, Z)$. By ?? and ?? there is $L \in \mathbb{L i m}\left(\bigwedge_{p} V, Z\right)$ such that $L\left(\wedge_{p}\left(\mathbf{e}_{A}\right)=\mu\left(\mathbf{e}_{A}\right)\right.$ whenever $A \subset E$ and $|A|=p$. It follows that $\mu=\mathbf{M}_{\bigwedge_{p} V, Z}(L)$ so $\mathbf{r n g} \mathbf{M}_{\Lambda_{p} V, Z}=\bigwedge^{p}(V, Z)$.

Thus $\mathbf{M}_{\Lambda_{p} V, Z} \in \mathbb{I}_{\mathbb{S O}}\left(\mathbb{L i n}\left(\bigwedge_{p}, Z\right), \bigwedge^{p}(V, Z)\right)$.
4.2. W. Suppose W is a vector space.

Definition 4.4. Suppose $L \in \mathbb{L i m}(V, W)$. We define

$$
\bigwedge_{p} L \in \mathbb{L i n}\left(\bigwedge_{p} V, \bigwedge_{p} W\right)
$$

by requiring that

$$
\left(\bigwedge_{p} L\right)\left(\wedge_{p}(v)\right)=\wedge_{p}(w)
$$

for $v \in V^{p}$ and where $w \in W^{p}$ is such that, for $i \in \llbracket 1, p \rrbracket, w_{i}=L\left(v_{i}\right)$.

Proposition 4.2. Suppose $l \in \mathbb{L i m}(V, W)$. The following diagram is commutative:

$$
\begin{array}{ccc}
\Lambda^{p} W & \xrightarrow{\Lambda^{p} l} & \bigwedge^{p} V \\
\downarrow \mathbf{L}_{p, W, \mathbb{R}} & & \downarrow \mathbf{L}_{p, V, \mathbb{R}} \\
\left(\Lambda_{p} W\right)^{*} & \xrightarrow{\left(\Lambda_{p} l\right)^{*}} & \left(\Lambda_{p} V\right)^{*}
\end{array}
$$

Proof. Suppose $\phi \in \bigwedge^{p} W, v \in V^{p}$ and $w \in W^{p}$ is such that the i-th coordinate of $w, i \in \llbracket 1, p \rrbracket$, equals $l\left(v_{i}\right)$. Then

$$
\mathbf{L}_{p, V, \mathbb{R}}\left(\left(\bigwedge^{p} l\right)(\phi)\left(\wedge_{p}(v)\right)\right)=\left(\bigwedge^{p} l\right)(\phi)(v)=\phi(w)
$$

and

$$
\begin{aligned}
\left(\left(\bigwedge_{p} l\right)^{*}\left(\mathbf{L}_{p, W, \mathbb{R}}(\phi)\right)\right) & \left(\wedge_{p}(v)\right)
\end{aligned}=\left(\mathbf{L}_{p, W, \mathbb{R}}(\phi)\right)\left(\left(\bigwedge_{p} l\right)\left(\wedge_{p}(v)\right)\right) .
$$

Proposition 4.3. Suppose $l \in \mathbb{L i n}(V, W)$. The following diagram is commutative.

$$
\begin{array}{ccc}
\bigwedge_{p}\left(W^{*}\right) & \xrightarrow{\Lambda_{p}\left(l^{*}\right)} & \bigwedge_{p}\left(V^{*}\right) \\
\downarrow \wedge^{p} & & \downarrow \wedge^{p} \\
\bigwedge^{p} W & \xrightarrow{\Lambda^{p} l} & \bigwedge^{p} V
\end{array}
$$

Proof. Suppose $\omega \in\left(W^{*}\right)^{p}$ and $v \in V^{p}$. Let $\eta \in\left(V^{*}\right)^{p}$ is such that its i-th coordinate, $i \in \llbracket 1, p \rrbracket$, equals $l^{*}\left(\omega_{i}\right)=\omega_{i} \circ l \in V^{*}$. Then

$$
\begin{gathered}
\left(\wedge^{p}\left(\left(\bigwedge_{p}\left(l^{*}\right)\right)\left(\wedge_{p}(\omega)\right)\right)\right)(v)=\left(\wedge_{p}(\eta)\right)(v)=\wedge^{p}(\eta)(v) \\
\left(\left(\bigwedge^{p} l\right)\left(\wedge_{p}\left(\wedge_{p}(\omega)\right)\right)(v)=\left(\left(\bigwedge^{p} l\right)\left(\wedge^{p}(\omega)\right)\right)(v)=\wedge^{p}(\eta)(v)\right.
\end{gathered}
$$

AAA
Definition 4.5. We let

$$
\mathbf{I}_{p}=\mathbf{L}_{p, V, \mathbb{R}} \circ \wedge^{p} \in \mathbb{L i n}\left(\bigwedge_{p}\left(V^{*}\right),\left(\bigwedge_{p} V\right)^{*}\right)
$$

Proposition 4.4. Suppose $l \in \mathbb{L i m}(V, W)$. The following diagram is commutative.

$$
\begin{array}{ccc}
\bigwedge_{p}\left(W^{*}\right) & \xrightarrow{\bigwedge_{p}\left(l^{*}\right)} & \bigwedge_{p}\left(V^{*}\right) \\
\downarrow \mathbf{I}_{p, W} & & \downarrow \mathbf{I}_{p, V} \\
\left(\bigwedge_{p} W\right)^{*} & \stackrel{\left(\bigwedge_{p} l\right)^{*}}{\longrightarrow} & \left(\bigwedge_{p} V\right)^{*}
\end{array}
$$

Proof.

$$
\begin{aligned}
\mathbf{I}_{p} \circ\left(\bigwedge_{p}\left(l^{*}\right)\right) & =\mathbf{L}_{p, V, \mathbb{R}} \circ \wedge^{p} \circ\left(\bigwedge_{p}\left(l^{*}\right)\right) \\
& =\mathbf{L}_{p, V, \mathbb{R}} \circ\left(\bigwedge^{p} l\right) \circ \wedge^{p} \\
& =\left(\bigwedge_{p} l\right)^{*} \circ \mathbf{L}_{p, W, \mathbb{R}} \circ \wedge^{p} \\
& =\left(\bigwedge_{p} l\right)^{*} \circ \mathbf{I}_{p}
\end{aligned}
$$

5. Inner Products.

Suppose $\beta \in \mathbb{L i m}\left(V, V^{*}\right)$ is the polarity of an inner product \bullet on V.
For each $p \in \mathbb{N}^{+}$and $v \in V^{p}$ let

$$
v^{\beta} \in\left(V^{*}\right)^{p}
$$

be such that its i-th coordinate, $i \in \llbracket 1, p \rrbracket$, equals $\beta\left(v_{i}\right)$.
Definition 5.1. For each $p \in \mathbb{N}^{+}$let

$$
\beta_{p}=\mathbf{I}_{p} \circ\left(\bigwedge_{p} \beta\right) \in \mathbb{I}_{\mathbb{S} O}\left(\bigwedge_{p} V,\left(\bigwedge_{p} V\right)^{*}\right)
$$

Theorem 5.1. β_{p} is the polarity of an inner product on $\bigwedge_{p} V$. In fact,

$$
\beta_{p}\left(\wedge_{p}(v)\right)\left(\wedge_{p}(w)\right)=\wedge^{p}\left(v^{\beta}\right)(w) \quad \text { for } v, w \in V^{p}
$$

Moreover, if $e \in V^{p}$ is such that the range of e is an orthonormal basis for V then

$$
\left\{\wedge_{p}\left(\mathbf{e}_{A}\right): A \subset \llbracket 1, \operatorname{dim} V \rrbracket \text { and }|A|=p\right\}
$$

is an orthonormal basis for $\bigwedge_{p} V$.
Theorem 5.2. Suppose p is an integer not less than $2, u \in V, u \neq 0, v \in V^{p-1}$ and $\wedge_{p-1}(v) \neq 0$. Then

$$
\left|\wedge_{p}(\overline{u v})\right| \leq|u|\left|\wedge_{p-1}(v)\right|
$$

with equality if and only if $u \in(\mathbf{s p a n} \mathbf{r n g} v)^{\perp}$.
Proof. Let $s \in \mathbf{r n g} v$ and $t \in(\mathbf{s p a n} \mathbf{r n g} v)^{\perp}$ be such that $u=s+t$. Then

$$
\begin{aligned}
\left|\wedge_{p}(\overline{u v})\right|^{2} & =\left(\beta(u) \wedge^{p-1}(\beta(v))\right)(\overline{u v}) \\
& =\left(\beta(u) \wedge^{p-1}(\beta(v))\right)(\overline{(s+t) v}) \\
& =\left(\left(\beta(u) \wedge^{p-1}(\beta(v))\right)\llcorner t)(v)\right. \\
& =\left(\beta(u)\llcorner t) \wedge^{p-1}(\beta(v))(v)\right. \\
& =|u|^{2}\left|\wedge_{p-1}(v)\right|^{2} .
\end{aligned}
$$

5.1. Adjoints. Suppose W is a finite dimensional inner product space and $l \in$ $\mathbb{L i m}(V, W)$. Then

$$
\left(\bigwedge_{p} L\right)^{b}=\beta_{p, W}^{-1} \circ\left(\bigwedge_{p} L\right)^{*} \circ \beta_{p, V} .
$$

Theorem 5.3.

$$
\left(\bigwedge_{p} L\right)^{b}=\bigwedge_{p}\left(L^{b}\right)
$$

Proof. Chase through the commutative diagrams.
5.2. The Hodge $*$ operator. Suppose $\operatorname{dim} V=n$. Let $\Omega \in \bigwedge_{n} V$ be such that $|\Omega|=1$. (Note that the only other member of \bigwedge_{V} of norm 1 is $-\Omega$.) Let $\Omega^{*} \in \bigwedge^{n} V$ be such that $\Omega^{*}(\Omega)=1$.

$$
\gamma^{p}: \bigwedge^{p} V \rightarrow \bigwedge_{p} V
$$

be defined by

$$
\gamma^{p}=\left(\bigwedge_{V *}^{p} \circ \bigwedge_{p} \beta\right)^{-1}
$$

aldownthrought the inner product. We define

$$
\cdot * \in \mathbb{L i m}\left(\bigwedge_{p} V, \bigwedge_{n-p} V\right)
$$

by letting

$$
* \eta=\gamma^{n-p}\left(\Omega^{*}\llcorner\eta)\right.
$$

Proposition 5.1. .* is an isometry. Moreover,

$$
\xi \wedge(* \eta)=(\xi \bullet \eta) \Omega
$$

and

$$
* * \xi=(-1)^{p(n-p)} \xi
$$

Proof. That $\cdot *$ is an isometry can be verified by observing that

$$
\left(* \mathbf{e}_{A}\right) \bullet \mathbf{e}_{B}= \begin{cases}1 & \text { if } A=B \\ 0 & \text { if } A \neq B\end{cases}
$$

whenever A, B are subsets of E and $|A|=p=|B|$.
We have

$$
\Omega^{*}\left(\xi \wedge(* \eta)=\Omega^{*}\left(\xi \wedge \beta_{n-p}^{-1}\left(\Omega^{*}\left\llcorner\beta_{p}\right)(\eta)\right)=\left(\Omega ^ { * } \llcorner \xi) \left(\wedge \beta_{n-p}^{-1}\left(\Omega^{*}\left\llcorner\beta_{p}\right)\right)=\xi \bullet \eta\right.\right.\right.\right.
$$

