1. An extremely useful abstract closure principle.

Suppose X is a vector space over \mathbb{R} and

$$|\cdot|: X \to [0,\infty]$$

is such that

(i) |cx| = |c||x| whenever $c \in \mathbf{R}$ and $x \in X$;

(ii) $|x+y| \le |x|+|y|$ whenever $x, y \in X$.

(If $|x| < \infty$ for each $x \in X$ we say $|\cdot|$ is a **seminorm on** X; obviously, a norm on X is a seminorm on X.)

For each $a \in X$ and $0 < r < \infty$ let

$$\mathbf{U}^{a}(r) = \{x \in X : |x - a| < r\}$$
 and let $\mathbf{B}^{a}(r) = \{x \in X : |x - a| \le r\}.$

As should come as no surprise, one calls $\mathbf{U}^{a}(r)$ the **open ball with center** a and radius r and one calls $\mathbf{B}^{a}(r)$ the closed ball with center a and radius r.

We declare a subset U of X to be open if for each $a \in U$ there is $r \in (0, \infty)$ such that $\mathbf{U}^a(r) \subset U$. It is a simple matter which we leave to the reader to verify that the open sets are a topology on X which respect to which the open balls are open and the closed balls are closed. One easily verifies that this topology is Hausdorff if and only if

$$|x| = 0 \iff x = 0$$
 whenever $x \in X$.

Proposition 1.1. Suppose Y is a normed vector space, $K : X \to Y$ and K is linear. Then K is continuous linear if and only if there is $M \in [0, \infty)$ such that

(1)
$$|K(x)| \le M|x|$$
 whenever $x \in X$.

(Here and in what follows $|\cdot|$ on the left denotes the norm on Y. This abuse of notation rarely, if ever, causes trouble.)

Proof. Suppose K is continuous. Since $K(0) = 0 \in \mathbf{U}^0(1)$ and K is continuous there is $r \in (0, \infty)$ such that $\mathbf{U}^0(r) \subset K^{-1}[\mathbf{U}^0(a)r)$ which amounts to saying that

|K(x)| < |x| whenever $x \in X$ and |x| < r.

Let $s \in (0, r)$.

Suppose $s \in X \sim \{0\}$. Then

$$\left|\frac{s}{|x|}x\right| = \frac{s}{|x|}|x| = s < r$$

so

$$|K(x)| = |K\left(\frac{|x|}{s}\left(\frac{s}{|x|}x\right)\right) = \frac{|x|}{s}K\left(\frac{s}{|x|}x\right) < \frac{|x|}{s}.$$

Moreover, |K(0)| = |0| = 0. Letting $s \downarrow r$ we find that (1) holds with M = 1/r. It is obvious that K is continuous if (1) holds for some $M \in [0, \infty)$.

Definition 1.1. We say Y is a **Banach space** if Y is a normed vector space which is complete with respect to the metric

$$X \times X \ni (x, y) \mapsto |x - y|$$

where $|\cdot|$ is the norm.

Let

 $\mathbf{2}$

$$W = \{ w \in X : |w| < \infty \}.$$

Proposition 1.2. W is a linear subspace of X and $|\cdot||W$ is a seminorm on W.

Proof. Simple exercise for the reader.

Theorem 1.1. Suppose

- (i) U is a linear subspace of W;
- (ii) Y is a Banach space;

$$l: U \to Y;$$

l is linear; $0 \le M < \infty$; and

(1)
$$|l(u)| \le M|u|$$
 whenever $u \in U$;

(iii) V is the closure of U.

Then there is a linear function

$$L: V \to Y$$

such that

 $\begin{array}{ll} (\mathrm{iv}) & L|V=l;\\ (\mathrm{v}) & |L(v)| \leq M|v| \text{ whenever } v \in V. \end{array}$

Moreover, if $K: V \to Y$ is a continuous function and K|U = l then K = L.

Remark 1.1. Note that, by definition,

 $V = \{ v \in W : \text{for each } r > 0 \text{ there is } u \in U \text{ such that } |v - u| < r \}.$

It is also worth noting that

 $V = \{ x \in X : \text{for each } r > 0 \text{ there is } u \in U \text{ such that } |x - u| < r \}.$

Proof. We have

$$|l(u_1) - l(u_2)| = |l(u_1 - u_2)| \le M |u_1 - u_2|$$
 whenever $u_1, u_2 \in U$

Thus $\operatorname{Lip}(l) \leq M < \infty$. By the preceding Theorem there is a function $L: V \to Y$ such that L|U = l and $\operatorname{Lip}(L) = \operatorname{Lip}(l)$. (Well, not *exactly*. Do you see why?)

We proceed to show L is linear.

Suppose $v \in V$, $c \in \mathbf{R}$. For any $u \in U$ we have

$$\begin{split} |L(cv) - cL(v)| \\ &= |L(cv) - l(cu) + cl(u) - cL(v)| \\ &\leq |L(cv) - l(cu)| + |cl(u) - cL(v)| \\ &= |L(cv) - L(cu)| + |cL(u) - cL(v)| \\ &= |L(cv) - L(cu)| + |c||L(u) - L(v)| \\ &\leq M|cv - cu| + |c|M|u - v| \\ &= 2M|c||u - v|. \end{split}$$

Since |u - v| may be made arbitrarily small we find that L(cv) = cL(v).

Suppose $v_1, v_2 \in V$. For any $u_1, u_2 \in U$ we have

$$\begin{split} |L(v_1+v_2)-(L(v_1)+L(v_2))| \\ &= |L(v_1+v_2)-l(u_1+u_2)-(L(v_1)-l(u_1)+L(v_2)-l(u_2))| \\ &\leq |L(v_1+v_2)-l(u_1+u_2)|+|L(v_1)-l(u_1)|+|L(v_2)-l(u_2)| \\ &= |L(v_1+v_2)-L(u_1+u_2)|+|L(v_1)-L(u_1)|+|L(v_2)-L(u_2)| \\ &\leq M|(v_1+v_2)-(u_1+u_2)|+M|v_1-u_1|+M|v_2-u_2| \\ &\leq M(|v_1-u_1|+|v_2-u_2|)+M|v_1-u_1|+M|v_2-u_2| \\ &= 2M(|v_1-u_1|+|v_2-u_2|). \end{split}$$

Since $|v_1 - u_1|$ and $|v_2 - u_2|$ may be made arbitrarily small we find that $L(v_1 + v_2) = L(v_1) + L(v_2)$.

Thus L is linear.

Finally, if $K: V \to Y$ is continuous K|U = l we have that K = L from earlier work. (Well, again, not *exactly*.)