1. AN EXTREMELY USEFUL ABSTRACT CLOSURE PRINCIPLE.

Suppose X is a vector space over R and
[-]: X — [0, 00]
is such that
(i) |ex| = |c||x| whenever ¢ € R and z € X;;
(i) |z 4+ y| < |z| + |y| whenever z,y € X.
(If |z| < oo for each € X we say |- | is a seminorm on X; obviously, a norm on

X is a seminorm on X.)
For each a € X and 0 < r < oo let

Ul(r)y={zeX:|zr—al]<r} andlet B%r)={zxeX:|jz—a| <7}

As should come as no surprise, one calls U%(r) the open ball with center a and
radius r and one calls B*(r) the closed ball with center a and radius r.

We declare a subset U of X to be open if for each a € U there is r € (0, 00) such
that U*(r) C U. It is a simple matter which we leave to the reader to verify that
the open sets are a topology on X which respect to which the open balls are open
and the closed balls are closed. One easily verifies that this topology is Hausdorff
if and only if

|z =0 & =0 whenever z € X.

Proposition 1.1. Suppose Y is a normed vector space, K : X — Y and K is
linear. Then K is continuous linear if and only if there is M € [0, 00) such that

(1) |K(z)| < M|z| whenever z € X.

(Here and in what follows | - | on the left denotes the norm on Y. This abuse of
notation rarely,if ever, causes trouble.)

Proof. Suppose K is continuous. Since K(0) = 0 € U°(1) and K is continuous
there is 7 € (0,00) such that U%(r) ¢ K~1[U%a)r which amounts to saying that

|K(x)| < |z| whenever z € X and |z| < 7.
Let s € (0,7).
Suppose s € X ~ {0}. Then

s
=—lz|=s<r

]

K@) = & (2 (20)) = g (=) < 2
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Moreover, |K(0)| = |0| = 0. Letting s | r we find that (1) holds with M = 1/r.
It is obvious that K is continuous if (1) holds for some M € [0, c0). O
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Definition 1.1. We say Y is a Banach space if Y is a normed vector space which
is complete with respect to the metric

X xX >3 (z,y)— |z —y|

where | - | is the norm.



Let
W={weX:|w| < oo}

Proposition 1.2. W is a linear subspace of X and | - ||W is a seminorm on W.

Proof. Simple exercise for the reader. O

Theorem 1.1. Suppose
(i) U is a linear subspace of W;
(ii) Y is a Banach space;
1:U—=Y;
[ is linear; 0 < M < oo; and
(1) [l(u)] < M|u| whenever u € U,
(iii) V is the closure of U.

Then there is a linear function
L: VY

such that
(iv) LIV =1;
(v) |L(v)] € M|v| whenever v € V.
Moreover, if K : V' — Y is a continuous function and K|U = then K = L.
Remark 1.1. Note that, by definition,
V = {v e W :for each r > 0 there is u € U such that |v — u| < r}.
It is also worth noting that
V ={x € X : for each r > 0 there is u € U such that |z — u| < r}.
Proof. We have
[T(ur) — U(u2)| = [l(ug —uz)| < M|u; —uz| whenever uj,ug € U.

Thus Lip(l) < M < oo. By the preceding Theorem there is a function L : V — Y
such that L|U = [ and Lip(L) = Lip(l). (Well, not ezactly. Do you see why?)

We proceed to show L is linear.

Suppose v € V, ¢ € R. For any u € U we have

|L(cv) — eL(v)

|
= |L(cv) — l(cu) + cl(u) — cL(v)|
< |L(ev) = l(cu)| + |cl(u) — eL(v)]
= |L(ev) — L(cu)| + |eL(u) — cL(v)]
= |L(cv) = L(cu)| + |e|| L(u) — L(v)|

< M|ew — cul + |c|M|u — v|
=2M|c||lu — v|.

Since |u — v| may be made arbitrarily small we find that L(cv) = cL(v).



Suppose v1,v2 € V. For any uy,us € U we have
|L(v1 + v2) — (L(v1) + L(v2))]
= |L(v1 + v2) = l(u1 + u2) — (L(v1) = I(u1) + L(vz) — (u2))]
< |L(v1 + v2) = Lur + u2)| + [L(v1) — U(ua)| + | L(v2) — I(uz)]
= |L(v1 +v2) — L(u1 + u2)| + [L(v1) = L(u1)| + [L(v2) — L(uz)|
< M|(v1 +v2) — (u1 +u2)| + Moy — ug| + Mvg — ug]
< M(Jvr — ug| + |va — ug|) + Moy — ug| + M|vg — us]
= 2M (Jv1 — up| + |v2 — ual).
Since |v; —wu1| and |vg —ug| may be made arbitrarily small we find that L(vy +v2) =
L(vy) + L(v9).
Thus L is linear.

Finally, if K : V — Y is continuous K|U = [ we have that K = L from earlier
work. (Well, again, not ezactly.) O



