
1. An extremely useful abstract closure principle.

Suppose X is a vector space over R and

| · | : X → [0,∞]

is such that

(i) |cx| = |c||x| whenever c ∈ R and x ∈ X;
(ii) |x+ y| ≤ |x|+ |y| whenever x, y ∈ X.

(If |x| < ∞ for each x ∈ X we say | · | is a seminorm on X; obviously, a norm on
X is a seminorm on X.)

For each a ∈ X and 0 < r < ∞ let

Ua(r) = {x ∈ X : |x− a| < r} and let Ba(r) = {x ∈ X : |x− a| ≤ r}.

As should come as no surprise, one calls Ua(r) the open ball with center a and
radius r and one calls Ba(r) the closed ball with center a and radius r.

We declare a subset U of X to be open if for each a ∈ U there is r ∈ (0,∞) such
that Ua(r) ⊂ U . It is a simple matter which we leave to the reader to verify that
the open sets are a topology on X which respect to which the open balls are open
and the closed balls are closed. One easily verifies that this topology is Hausdorff
if and only if

|x| = 0 ⇔ x = 0 whenever x ∈ X.

Proposition 1.1. Suppose Y is a normed vector space, K : X → Y and K is
linear. Then K is continuous linear if and only if there is M ∈ [0,∞) such that

(1) |K(x)| ≤ M |x| whenever x ∈ X.

(Here and in what follows | · | on the left denotes the norm on Y . This abuse of
notation rarely,if ever, causes trouble.)

Proof. Suppose K is continuous. Since K(0) = 0 ∈ U0(1) and K is continuous
there is r ∈ (0,∞) such that U0(r) ⊂ K−1[U0(a)r which amounts to saying that

|K(x)| < |x| whenever x ∈ X and |x| < r.

Let s ∈ (0, r).
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Moreover, |K(0)| = |0| = 0. Letting s ↓ r we find that (1) holds with M = 1/r.
It is obvious that K is continuous if (1) holds for some M ∈ [0,∞). □

Definition 1.1. We say Y is a Banach space if Y is a normed vector space which
is complete with respect to the metric

X ×X ∋ (x, y) 7→ |x− y|

where | · | is the norm.
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Let

W = {w ∈ X : |w| < ∞}.

Proposition 1.2. W is a linear subspace of X and | · |
∣∣W is a seminorm on W .

Proof. Simple exercise for the reader. □

Theorem 1.1. Suppose

(i) U is a linear subspace of W ;
(ii) Y is a Banach space;

l : U → Y ;

l is linear; 0 ≤ M < ∞; and

(1) |l(u)| ≤ M |u| whenever u ∈ U ;

(iii) V is the closure of U .

Then there is a linear function

L : V → Y

such that

(iv) L|V = l;
(v) |L(v)| ≤ M |v| whenever v ∈ V .

Moreover, if K : V → Y is a continuous function and K|U = l then K = L.

Remark 1.1. Note that, by definition,

V = {v ∈ W : for each r > 0 there is u ∈ U such that |v − u| < r}.

It is also worth noting that

V = {x ∈ X : for each r > 0 there is u ∈ U such that |x− u| < r}.

Proof. We have

|l(u1)− l(u2)| = |l(u1 − u2)| ≤ M |u1 − u2| whenever u1, u2 ∈ U .

Thus Lip(l) ≤ M < ∞. By the preceding Theorem there is a function L : V → Y
such that L|U = l and Lip(L) = Lip(l). (Well, not exactly. Do you see why?)

We proceed to show L is linear.
Suppose v ∈ V , c ∈ R. For any u ∈ U we have

|L(cv)− cL(v)|
= |L(cv)− l(cu) + cl(u)− cL(v)|
≤ |L(cv)− l(cu)|+ |cl(u)− cL(v)|
= |L(cv)− L(cu)|+ |cL(u)− cL(v)|
= |L(cv)− L(cu)|+ |c||L(u)− L(v)|
≤ M |cv − cu|+ |c|M |u− v|
= 2M |c||u− v|.

Since |u− v| may be made arbitrarily small we find that L(cv) = cL(v).
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Suppose v1, v2 ∈ V . For any u1, u2 ∈ U we have

|L(v1 + v2)− (L(v1) + L(v2))|
= |L(v1 + v2)− l(u1 + u2)− (L(v1)− l(u1) + L(v2)− l(u2))|
≤ |L(v1 + v2)− l(u1 + u2)|+ |L(v1)− l(u1)|+ |L(v2)− l(u2)|
= |L(v1 + v2)− L(u1 + u2)|+ |L(v1)− L(u1)|+ |L(v2)− L(u2)|
≤ M |(v1 + v2)− (u1 + u2)|+M |v1 − u1|+M |v2 − u2|
≤ M(|v1 − u1|+ |v2 − u2|) +M |v1 − u1|+M |v2 − u2|
= 2M(|v1 − u1|+ |v2 − u2|).

Since |v1−u1| and |v2−u2| may be made arbitrarily small we find that L(v1+v2) =
L(v1) + L(v2).

Thus L is linear.
Finally, if K : V → Y is continuous K|U = l we have that K = L from earlier

work. (Well, again, not exactly.) □


